TCBB paper - Supplementary materials

1 Supplemental material 1

Theorem 1. Let $\mathcal{B}=\langle V, F, d\rangle$ be a $B S B N$ and \mathcal{D} be its encoded $D G A R B N$ by Definition 5. For any pair of states s and s^{\prime}, we have s^{\prime} is reachable from s in \mathcal{B} iff $\left[\left[s^{\prime}\right]\right]^{\mathcal{D}}$ is reachable from $[[s]]^{\mathcal{D}}$ in \mathcal{D}.
Proof. Assume that s^{\prime} is the next state of s in \mathcal{B}, i.e., $s \xrightarrow{\mathcal{B}} s^{\prime}$. Then, $s \xrightarrow{B_{1}}$ $s^{1} \ldots s^{m-1} \xrightarrow{B_{m}} s^{\prime}$ where $m=n b(d)$ and B_{i} is the i-th block of d and $s \xrightarrow{B_{1}} s^{1}$ denotes that s^{1} is the state obtained by updating all nodes of B_{1} in parallel with the current state is s. In $[[s]]^{\mathcal{D}}$, the nodes of B_{1} will be updated since $t_{\text {scaled }}=0, t_{\text {scaled }} \% p_{i}=0=q_{i}, x_{i} \in B_{1}$. Then, $[[s]]^{\mathcal{D}} \xrightarrow{\mathcal{D}}\left(s^{1}, 1\right)$ where $\left(s^{1}, 1\right)$ is an extended state of \mathcal{D} with $t_{\text {scaled }}=1$. Similarly, we have $[[s]]^{\mathcal{D}} \xrightarrow{\mathcal{D}}$ $\left(s^{1}, 1\right) \ldots\left(s^{m-1}, m-1\right) \xrightarrow{\mathcal{D}}\left[\left[s^{\prime}\right]\right]^{\mathcal{D}}$. That means $\left[\left[s^{\prime}\right]\right]^{\mathcal{D}}$ is reachable from $[[s]]^{\mathcal{D}}$ in \mathcal{D}.

Assume that $[[s]]^{\mathcal{D}} \xrightarrow{\mathcal{D}}\left(s^{1}, 1\right) \ldots\left(s^{m-1}, m-1\right) \xrightarrow{\mathcal{D}}\left[\left[s^{\prime}\right]\right]^{\mathcal{D}}$. Let V_{1} be the set of nodes whose updates make \mathcal{D} transits from $[[s]]^{\mathcal{D}}$ to $\left(s^{1}, 1\right)$. Then, $t_{\text {scaled }} \% p_{i}=$ $0=q_{i}, i \in V_{1}$. Thus, $V_{1}=B_{1}$, implying that $s \xrightarrow{B_{1}} s^{1}$ in \mathcal{B}. Similarly, we have $s \xrightarrow{B_{1}} s^{1} \ldots s^{m-1} \xrightarrow{B_{m}} s^{\prime}$. That means s^{\prime} is reachable from s in \mathcal{B}.

Now, we can conclude the proof.
Theorem 2. Let $\mathcal{B}=\langle V, F, d\rangle$ be a BSBN and \mathcal{D} be its encoded $D G A R B N$ by Definition 5. Let $A^{\mathcal{B}}$ and $A^{\mathcal{D}}$ be the sets of attractors of \mathcal{B} and \mathcal{D}, respectively. Then, $A^{\mathcal{B}}$ one-to-one corresponds to $A^{\mathcal{D}}$. Moreover, given an attractor att of \mathcal{B}, its corresponding attractor of \mathcal{D} is att satisfying att $=\left[\left[\text { att } t^{\prime}\right]\right]^{\mathcal{B}}$ where $[[E S]]^{\mathcal{B}}=$ $\{s \mid(s, 0) \in E S\}, E S$ is a set of extended states.

Proof. Assume that att is an attractor of \mathcal{B}. Let $F R^{\mathcal{B}}(S)$ denote the set of states reachable from the set S of states in \mathcal{B}. Let s be a state in att. Then, $F R^{\mathcal{B}}(\{s\})=$ att. Let $F R^{\mathcal{D}}(E S)$ denote the set of extended states reachable from the set $E S$ of extended states in \mathcal{D}. Start from $[[s]]^{\mathcal{D}}$, following the evolution of \mathcal{D}, we will come back to $[[s]]^{\mathcal{D}}$ by Theorem 1. Since \mathcal{D} has only fixed points or limit cycles, $F R^{\mathcal{D}}\left(\left\{[[s]]^{\mathcal{D}}\right\}\right)$ is an attractor of \mathcal{D}. Moreover, $\left[\left[F R^{\mathcal{D}}\left(\left\{[[s]]^{\mathcal{D}}\right\}\right)\right]\right]^{\mathcal{B}}=$ $F R^{\mathcal{B}}(\{s\})$ by Theorem 1 . Thus, $\left[\left[F R^{\mathcal{D}}\left(\left\{[[s]]^{\mathcal{D}}\right\}\right)\right]\right]^{\mathcal{B}}=$ att. (i)

Given $a t t_{1}, a t t_{2} \in A^{\mathcal{B}}, a t t_{1} \cap a t t_{2}=\emptyset$. Consider an arbitrary pair of states $s^{1} \in \operatorname{att}_{1}$ and $s^{2} \in$ att $_{2}$. If $F R^{\mathcal{D}}\left(\left\{\left[\left[s^{1}\right]\right]^{\mathcal{D}}\right\}\right) \cap F R^{\mathcal{D}}\left(\left\{\left[\left[s^{2}\right]\right]^{\mathcal{D}}\right\}\right) \neq \emptyset$, then they are the same attractor since \mathcal{D} has only fixed points or limit cycles. This implies that $a t t_{1}=a t t_{2}$ contradicting to $a t t_{1} \cap a t t_{2}=\emptyset$. Thus, $F R^{\mathcal{D}}\left(\left\{\left[\left[s^{1}\right]\right]^{\mathcal{D}}\right\}\right) \cap$ $F R^{\mathcal{D}}\left(\left\{\left[\left[s^{2}\right]\right]^{\mathcal{D}}\right\}\right)=\emptyset$. (ii)

Assume that att' is an attractor of \mathcal{D}. Let att be a set of states in \mathcal{B} such that $a t t=\left[\left[a t t^{\prime}\right]\right]^{\mathcal{B}}$. By Theorem 1, each state of att is reachable from any other state of att. Suppose that there exists a state $s \notin$ att such that it is reachable from att. Then $[[s]]^{\mathcal{D}}$ is not in att ${ }^{\prime}$ but is reachable from att ${ }^{\prime}$ by Theorem 1 . This is a contradiction. Thus, att is an attractor of \mathcal{B}. (iii)

Given $a t t_{1}^{\prime}, a t t_{2}^{\prime} \in A^{\mathcal{D}}$, att $t_{1}^{\prime} \cap a t t_{2}^{\prime}=\emptyset$. Oviously, $\left[\left[a t t_{1}^{\prime}\right]\right]^{\mathcal{B}} \cap\left[\left[a t t_{2}^{\prime}\right]\right]^{\mathcal{B}}=\emptyset$. (iv)
There is an injection from $A^{\mathcal{B}}$ to $A^{\mathcal{D}}$ by (i) and (ii). There is also an injection from $A^{\mathcal{D}}$ to $A^{\mathcal{B}}$ by (iii) and (iv). Thus, $A^{\mathcal{B}}$ one-to-one corresponds to $A^{\mathcal{D}}$. In
addition, att $=\left[\left[a t t^{\prime}\right]\right]^{\mathcal{B}}$ with att is an attractor of \mathcal{B} and $a t t^{\prime}$ is its corresponding attractor of \mathcal{D}. We also obtain that $\left|a t t^{\prime}\right|=n b(d) \times|a t t|$ since \mathcal{D} has only fixed points or limit cycles.

Lemma 1. Let \mathcal{D} be a $D G A R B N$ and \mathcal{G} be its $G A R B N$ counterpart. Let es be an extended state of \mathcal{D} and $F R^{\mathcal{D}}(\{e s\})$ be the set of extended states reachable from es in \mathcal{D}. Then, $\left[\left[F R^{\mathcal{D}}(\{e s\})\right]\right]^{I} \subseteq F R^{\mathcal{G}}\left(\left\{[[e s]]^{I}\right\}\right)$.

Proof. Let $G(\mathcal{D})$ and $G(\mathcal{G})$ be the ESTG and STG of \mathcal{D} and \mathcal{G}, respectively. If $\left(e s, e s^{\prime}\right)$ is an arc in $G(\mathcal{D})$, then $\left([[e s]]^{I},\left[\left[e s^{\prime}\right]\right]^{I}\right)$ is also an arc in $G(\mathcal{G})$ since in GARBNs, any number of nodes can be synchronously updated. Thus, it is easy to imply that $\left[\left[F R^{\mathcal{D}}(\{e s\})\right]\right]^{I} \subseteq F R^{\mathcal{G}}\left(\left\{[[e s]]^{I}\right\}\right)$.

Theorem 3. Let \mathcal{D} be a $D G A R B N$ and \mathcal{G} be its $G A R B N$ counterpart. Let $A^{\mathcal{D}}$ and $A^{\mathcal{G}}$ be the sets of attractors of \mathcal{D} and \mathcal{G}, respectively. Then, there exists a mapping $m: A^{\mathcal{G}} \rightarrow A^{\mathcal{D}}$ with $[[m(a t t)]]^{I} \subseteq$ att for all att $\in A^{\mathcal{G}}$. Moreover, $m\left(a t t_{1}\right) \neq m\left(\right.$ att $\left._{2}\right)$ for all att t_{1}, att $_{2} \in A^{\mathcal{G}}$, att $_{1} \neq$ att $_{2}$. That means m is an injection.

Proof. Let att $\in A^{\mathcal{G}}$ and $s \in a t t$ be a state of \mathcal{G}. Obviously, $F R^{\mathcal{G}}(\{s\})=a t t$.
Let $e s^{\prime}$ be an extended state of \mathcal{D} such that $e s_{i}^{\prime}=s_{i}, i \in\{1, \ldots, n\}$ and $e s_{n+1}^{\prime}=0$. By Lemma 1 , we have $\left[\left[F R^{\mathcal{D}}\left(\left\{e s^{\prime}\right\}\right)\right]\right]^{I} \subseteq F R^{\mathcal{G}}\left(\left\{\left[\left[e s^{\prime}\right]\right]^{I}\right\}\right)=F R^{\mathcal{G}}(\{s\})=$ att. Clearly, there is an attractor $a t t^{\prime}$ of \mathcal{D} such that $a t t^{\prime} \subseteq F R^{\mathcal{D}}\left(\left\{e s^{\prime}\right\}\right)$. Then, $\left[\left[a t t^{\prime}\right]\right]^{I} \subseteq\left[\left[F R^{\mathcal{D}}\left(\left\{e s^{\prime}\right\}\right)\right]\right]^{I}$ be the definition of image. Thus, $\left[\left[a t t^{\prime}\right]\right]^{I} \subseteq$ att. We now can choose the mapping m as $m(a t t)=a t t^{\prime}$. Note that since $a t t^{\prime}$ may not be unique, m may not be uniquely determined.

For all $a^{2} t_{1}, a t t_{2} \in A^{\mathcal{G}}, a t t_{1} \neq a t t_{2}$, we have $a t t_{1} \cap a t t_{2}=\emptyset$ since attractors of \mathcal{G} are pairwise disjoint. $\left[\left[m\left(a t t_{1}\right)\right]\right]^{I} \subseteq a t t_{1}$ and $\left[\left[m\left(a t t_{2}\right)\right]\right]^{I} \subseteq a t t_{2}$ imply that $\left[\left[m\left(a t t_{1}\right)\right]\right]^{I} \cap\left[\left[m\left(a t t_{2}\right)\right]\right]^{I}=\emptyset$. Then, $m\left(a t t_{1}\right) \cap m\left(a t t_{2}\right)=\emptyset$ by the definition of image. Thus, $m\left(a t t_{1}\right) \neq m\left(a t t_{2}\right)$. Therefore, m is an injection.
Theorem 4. Let \mathcal{M} be an $M x R B N$ of M pure contexts. Let \mathcal{D} be an arbitrary $D G A R B N$ among M constituent DGARBNs of \mathcal{M}. Let $\mathcal{A}^{\mathcal{M}}$ and $\mathcal{A}^{\mathcal{D}}$ be the sets of attractors of \mathcal{M} and \mathcal{D}, respectively. Then, there exists a mapping m : $\mathcal{A}^{\mathcal{M}} \rightarrow \mathcal{A}^{\mathcal{D}}$ with $m($ att $) \subseteq$ att for all att $\in \mathcal{A}^{\mathcal{M}}$. Moreover, $m\left(\right.$ att $\left._{1}\right) \neq m\left(\right.$ att $\left._{2}\right)$ for all att ${ }_{1}$, att $t_{2} \in \mathcal{A}^{\mathcal{M}}$, att $_{1} \neq$ att $_{2}$. That means m is an injection.

Proof. Let att $\in \mathcal{A}^{\mathcal{M}}$. Obviously, an attractor of \mathcal{M} always contains an extended state es such that $e s_{n+1}=0$. Thus, there is an extended state es where $e s \in$ att and $e s_{n+1}=0$. Then, $F R^{\mathcal{M}}(\{e s\})=a t t$. Moreover, es is also an extended state of \mathcal{D}.

Since the ESTG of \mathcal{M} contains the ESTG of $\mathcal{D}, F R^{\mathcal{D}}(\{e s\}) \subseteq F R^{\mathcal{M}}(\{e s\})$. Obviously, there is an attractor att ${ }^{\prime}$ of \mathcal{D} such that $a t t^{\prime} \subseteq F R^{\mathcal{D}}(\{e s\})$. Then, $a t t^{\prime} \subseteq F R^{\mathcal{M}}(\{e s\})=a t t$. We now can choose the mapping m as $m(a t t)=a t t^{\prime}$. Note that since $a t t^{\prime}$ may not be unique, m may not be uniquely determined.

For all att $_{1}, a t t_{2} \in \mathcal{A}^{\mathcal{M}}, a t t_{1} \neq a t t_{2}$, we have $a t t_{1} \cap a t t_{2}=\emptyset$ since attractors of \mathcal{M} are pairwise disjoint. $m\left(a t t_{1}\right) \subseteq a t t_{1}$ and $m\left(a t t_{1}\right) \subseteq a t t_{1}$ imply that $m\left(a t t_{1}\right) \cap m\left(a t t_{2}\right)=\emptyset$. Thus, $m\left(a t t_{1}\right) \neq m\left(a t t_{2}\right)$. Therefore, m is an injection.

Theorem 5. The proposed SMT-based method terminates and correctly finds all attractors of a DGARBN.

Proof. Let \mathcal{M} and \mathcal{D} denote the proposed SMT-based method and the DGARBN, respectively.

Until at least one attractor remains unmarked, we can find a path of any length such that its last extended state is not in any marked attractors since we can cycle in an attractor forever. That means \mathcal{M} will not terminate if at least one attractor remains unmarked (a).

In the beginning of \mathcal{M}, the number of marked attractors is 0 . The length of a path such that it does not contain any limit cycles must be less than the number of extended states of the ESTG of $\mathcal{D}(\mathrm{b})$. A better upper bound is the diameter of the ESTG. The diameter of a graph is defined as the length of the longest shortest path between two nodes. Since p always increases when no limit cycle is found and the ESTG has at least one limit cycle, we eventually find a path containing a limit cycle by (a). Now this limit cycle is marked (i.e., is added to the set of marked attractors). If all attractors of \mathcal{D} are marked, \mathcal{M} must eventually terminate by (b). Otherwise, \mathcal{M} continues its search by (a). Since the number of attractors of \mathcal{D} is finite, all attractors will eventually be marked. Now, \mathcal{M} can terminate by (b) and all attractors are found.

