TCBB paper - Supplementary materials

1 Supplemental material 1

Theorem 1. Let $\mathcal{B} = \langle V, F, d \rangle$ be a BSBN and \mathcal{D} be its encoded DGARBN by Definition 5. For any pair of states s and s', we have s' is reachable from s in \mathcal{B} iff $[[s']]^{\mathcal{D}}$ is reachable from $[[s]]^{\mathcal{D}}$ in \mathcal{D} .

Proof. Assume that s' is the next state of s in \mathcal{B} , i.e., $s \xrightarrow{\mathcal{B}} s'$. Then, $s \xrightarrow{B_1} s^{1} \dots s^{m-1} \xrightarrow{B_m} s'$ where m = nb(d) and B_i is the *i*-th block of d and $s \xrightarrow{B_1} s^1$ denotes that s^1 is the state obtained by updating all nodes of B_1 in parallel with the current state is s. In $[[s]]^{\mathcal{D}}$, the nodes of B_1 will be updated since $t_{scaled} = 0, t_{scaled} \% p_i = 0 = q_i, x_i \in B_1$. Then, $[[s]]^{\mathcal{D}} \xrightarrow{\mathcal{D}} (s^1, 1)$ where $(s^1, 1)$ is an extended state of \mathcal{D} with $t_{scaled} = 1$. Similarly, we have $[[s]]^{\mathcal{D}} \xrightarrow{\mathcal{D}} (s^1, 1) \dots (s^{m-1}, m-1) \xrightarrow{\mathcal{D}} [[s']]^{\mathcal{D}}$. That means $[[s']]^{\mathcal{D}}$ is reachable from $[[s]]^{\mathcal{D}}$ in \mathcal{D} .

Assume that $[[s]]^{\mathcal{D}} \xrightarrow{\mathcal{D}} (s^1, 1) \dots (s^{m-1}, m-1) \xrightarrow{\mathcal{D}} [[s']]^{\mathcal{D}}$. Let V_1 be the set of nodes whose updates make \mathcal{D} transits from $[[s]]^{\mathcal{D}}$ to $(s^1, 1)$. Then, $t_{scaled} \% p_i = 0 = q_i, i \in V_1$. Thus, $V_1 = B_1$, implying that $s \xrightarrow{B_1} s^1$ in \mathcal{B} . Similarly, we have $s \xrightarrow{B_1} s^1 \dots s^{m-1} \xrightarrow{B_m} s'$. That means s' is reachable from s in \mathcal{B} .

Now, we can conclude the proof.

Theorem 2. Let $\mathcal{B} = \langle V, F, d \rangle$ be a BSBN and \mathcal{D} be its encoded DGARBN by Definition 5. Let $A^{\mathcal{B}}$ and $A^{\mathcal{D}}$ be the sets of attractors of \mathcal{B} and \mathcal{D} , respectively. Then, $A^{\mathcal{B}}$ one-to-one corresponds to $A^{\mathcal{D}}$. Moreover, given an attractor att of \mathcal{B} , its corresponding attractor of \mathcal{D} is att' satisfying att = $[[att']]^{\mathcal{B}}$ where $[[ES]]^{\mathcal{B}} = \{s|(s,0) \in ES\}$, ES is a set of extended states.

Proof. Assume that att is an attractor of \mathcal{B} . Let $FR^{\mathcal{B}}(S)$ denote the set of states reachable from the set S of states in \mathcal{B} . Let s be a state in att. Then, $FR^{\mathcal{B}}(\{s\}) = att$. Let $FR^{\mathcal{D}}(ES)$ denote the set of extended states reachable from the set ES of extended states in \mathcal{D} . Start from $[[s]]^{\mathcal{D}}$, following the evolution of \mathcal{D} , we will come back to $[[s]]^{\mathcal{D}}$ by Theorem 1. Since \mathcal{D} has only fixed points or limit cycles, $FR^{\mathcal{D}}(\{[[s]]^{\mathcal{D}}\})$ is an attractor of \mathcal{D} . Moreover, $[[FR^{\mathcal{D}}(\{[[s]]^{\mathcal{D}}\})]]^{\mathcal{B}} = FR^{\mathcal{B}}(\{s\})$ by Theorem 1. Thus, $[[FR^{\mathcal{D}}(\{[[s]]^{\mathcal{D}}\})]]^{\mathcal{B}} = att$. (i) Given $att_1, att_2 \in A^{\mathcal{B}}, att_1 \cap att_2 = \emptyset$. Consider an arbitrary pair of states

Given $att_1, att_2 \in A^{\mathcal{B}}, att_1 \cap att_2 = \emptyset$. Consider an arbitrary pair of states $s^1 \in att_1$ and $s^2 \in att_2$. If $FR^{\mathcal{D}}(\{[[s^1]]^{\mathcal{D}}\}) \cap FR^{\mathcal{D}}(\{[[s^2]]^{\mathcal{D}}\}) \neq \emptyset$, then they are the same attractor since \mathcal{D} has only fixed points or limit cycles. This implies that $att_1 = att_2$ contradicting to $att_1 \cap att_2 = \emptyset$. Thus, $FR^{\mathcal{D}}(\{[[s^1]]^{\mathcal{D}}\}) \cap FR^{\mathcal{D}}(\{[[s^2]]^{\mathcal{D}}\}) = \emptyset$. (ii)

Assume that att' is an attractor of \mathcal{D} . Let att be a set of states in \mathcal{B} such that $att = [[att']]^{\mathcal{B}}$. By Theorem 1, each state of att is reachable from any other state of att. Suppose that there exists a state $s \notin att$ such that it is reachable from att. Then $[[s]]^{\mathcal{D}}$ is not in att' but is reachable from att' by Theorem 1. This is a contradiction. Thus, att is an attractor of \mathcal{B} . (iii)

This is a contradiction. Thus, att is an attractor of \mathcal{B} . (iii) Given $att'_1, att'_2 \in A^{\mathcal{D}}, att'_1 \cap att'_2 = \emptyset$. Oviously, $[[att'_1]]^{\mathcal{B}} \cap [[att'_2]]^{\mathcal{B}} = \emptyset$. (iv) There is an injection from $A^{\mathcal{B}}$ to $A^{\mathcal{D}}$ by (i) and (ii). There is also an injection from $A^{\mathcal{D}}$ to $A^{\mathcal{B}}$ by (iii) and (iv). Thus, $A^{\mathcal{B}}$ one-to-one corresponds to $A^{\mathcal{D}}$. In addition, $att = [[att']]^{\mathcal{B}}$ with att is an attractor of \mathcal{B} and att' is its corresponding attractor of \mathcal{D} . We also obtain that $|att'| = nb(d) \times |att|$ since \mathcal{D} has only fixed points or limit cycles.

Lemma 1. Let \mathcal{D} be a DGARBN and \mathcal{G} be its GARBN counterpart. Let es be an extended state of \mathcal{D} and $FR^{\mathcal{D}}(\{es\})$ be the set of extended states reachable from es in \mathcal{D} . Then, $[[FR^{\mathcal{D}}(\{es\})]]^I \subseteq FR^{\mathcal{G}}(\{[[es]]^I\})$.

Proof. Let $G(\mathcal{D})$ and $G(\mathcal{G})$ be the ESTG and STG of \mathcal{D} and \mathcal{G} , respectively. If (es, es') is an arc in $G(\mathcal{D})$, then $([[es]]^I, [[es']]^I)$ is also an arc in $G(\mathcal{G})$ since in GARBNs, any number of nodes can be synchronously updated. Thus, it is easy to imply that $[[FR^{\mathcal{D}}(\{es\})]]^I \subseteq FR^{\mathcal{G}}(\{[es]]^I)$.

Theorem 3. Let \mathcal{D} be a DGARBN and \mathcal{G} be its GARBN counterpart. Let $A^{\mathcal{D}}$ and $A^{\mathcal{G}}$ be the sets of attractors of \mathcal{D} and \mathcal{G} , respectively. Then, there exists a mapping $m : A^{\mathcal{G}} \to A^{\mathcal{D}}$ with $[[m(att)]]^I \subseteq att$ for all $att \in A^{\mathcal{G}}$. Moreover, $m(att_1) \neq m(att_2)$ for all $att_1, att_2 \in A^{\mathcal{G}}, att_1 \neq att_2$. That means m is an injection.

Proof. Let $att \in A^{\mathcal{G}}$ and $s \in att$ be a state of \mathcal{G} . Obviously, $FR^{\mathcal{G}}(\{s\}) = att$.

Let es' be an extended state of \mathcal{D} such that $es'_i = s_i, i \in \{1, ..., n\}$ and $es'_{n+1} = 0$. By Lemma 1, we have $[[FR^{\mathcal{D}}(\{es'\})]]^I \subseteq FR^{\mathcal{G}}(\{[[es']]^I\}) = FR^{\mathcal{G}}(\{s\}) = att$. Clearly, there is an attractor att' of \mathcal{D} such that $att' \subseteq FR^{\mathcal{D}}(\{es'\})$. Then, $[[att']]^I \subseteq [[FR^{\mathcal{D}}(\{es'\})]]^I$ be the definition of image. Thus, $[[att']]^I \subseteq att$. We now can choose the mapping m as m(att) = att'. Note that since att' may not be unique, m may not be uniquely determined.

For all $att_1, att_2 \in A^{\mathcal{G}}, att_1 \neq att_2$, we have $att_1 \cap att_2 = \emptyset$ since attractors of \mathcal{G} are pairwise disjoint. $[[m(att_1)]]^I \subseteq att_1$ and $[[m(att_2)]]^I \subseteq att_2$ imply that $[[m(att_1)]]^I \cap [[m(att_2)]]^I = \emptyset$. Then, $m(att_1) \cap m(att_2) = \emptyset$ by the definition of image. Thus, $m(att_1) \neq m(att_2)$. Therefore, m is an injection. \Box

Theorem 4. Let \mathcal{M} be an MxRBN of \mathcal{M} pure contexts. Let \mathcal{D} be an arbitrary DGARBN among \mathcal{M} constituent DGARBNs of \mathcal{M} . Let $\mathcal{A}^{\mathcal{M}}$ and $\mathcal{A}^{\mathcal{D}}$ be the sets of attractors of \mathcal{M} and \mathcal{D} , respectively. Then, there exists a mapping $m : \mathcal{A}^{\mathcal{M}} \to \mathcal{A}^{\mathcal{D}}$ with $m(att) \subseteq att$ for all $att \in \mathcal{A}^{\mathcal{M}}$. Moreover, $m(att_1) \neq m(att_2)$ for all $att_1, att_2 \in \mathcal{A}^{\mathcal{M}}, att_1 \neq att_2$. That means m is an injection.

Proof. Let $att \in \mathcal{A}^{\mathcal{M}}$. Obviously, an attractor of \mathcal{M} always contains an extended state es such that $es_{n+1} = 0$. Thus, there is an extended state es where $es \in att$ and $es_{n+1} = 0$. Then, $FR^{\mathcal{M}}(\{es\}) = att$. Moreover, es is also an extended state of \mathcal{D} .

Since the ESTG of \mathcal{M} contains the ESTG of \mathcal{D} , $FR^{\mathcal{D}}(\{es\}) \subseteq FR^{\mathcal{M}}(\{es\})$. Obviously, there is an attractor att' of \mathcal{D} such that $att' \subseteq FR^{\mathcal{D}}(\{es\})$. Then, $att' \subseteq FR^{\mathcal{M}}(\{es\}) = att$. We now can choose the mapping m as m(att) = att'. Note that since att' may not be unique, m may not be uniquely determined.

For all $att_1, att_2 \in \mathcal{A}^{\mathcal{M}}, att_1 \neq att_2$, we have $att_1 \cap att_2 = \emptyset$ since attractors of \mathcal{M} are pairwise disjoint. $m(att_1) \subseteq att_1$ and $m(att_1) \subseteq att_1$ imply that $m(att_1) \cap m(att_2) = \emptyset$. Thus, $m(att_1) \neq m(att_2)$. Therefore, m is an injection.

Theorem 5. The proposed SMT-based method terminates and correctly finds all attractors of a DGARBN.

Proof. Let \mathcal{M} and \mathcal{D} denote the proposed SMT-based method and the DGARBN, respectively.

Until at least one attractor remains unmarked, we can find a path of any length such that its last extended state is not in any marked attractors since we can cycle in an attractor forever. That means \mathcal{M} will not terminate if at least one attractor remains unmarked (a).

In the beginning of \mathcal{M} , the number of marked attractors is 0. The length of a path such that it does not contain any limit cycles must be less than the number of extended states of the ESTG of \mathcal{D} (b). A better upper bound is the *diameter* of the ESTG. The diameter of a graph is defined as the length of the longest shortest path between two nodes. Since p always increases when no limit cycle is found and the ESTG has at least one limit cycle, we eventually find a path containing a limit cycle by (a). Now this limit cycle is marked (i.e., is added to the set of marked attractors). If all attractors of \mathcal{D} are marked, \mathcal{M} must eventually terminate by (b). Otherwise, \mathcal{M} continues its search by (a). Since the number of attractors of \mathcal{D} is finite, all attractors will eventually be marked. Now, \mathcal{M} can terminate by (b) and all attractors are found.