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Abstract—Deterministic asynchronous Boolean networks play a crucial role in modeling and analysis of gene regulatory networks. In
this paper, we focus on a typical type of deterministic asynchronous Boolean networks called deterministic generalized asynchronous
random Boolean networks (DGARBNs). We first formulate the extended state transition graph, which captures the whole dynamics
of a DGARBN and paves potential ways to analyze this DGARBN. We then propose two SMT-based methods for attractor detection
and optimal control of DGARBNs. These methods are implemented in a JAVA tool called DABoolNet. Two experiments are designed
to highlight the scalability of the proposed methods. We also formally state and prove several relations between DGARBNs and other
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networks, and mixed-context random Boolean networks. Several case studies are presented to show the applications of our methods.
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1 INTRODUCTION

Boolean networks (BNs) play a crucial role in modeling and
analysis of complex biological networks (e.g., gene regulatory
networks [1]). They have also been applied to many areas be-
yond systems biology, such as, mathematics, neural networks,
social modeling, and robotics (see [2]). Many different types
of updating schemes of BNs (e.g., synchronous, asynchronous,
deterministic, or non-deterministic), which regulate the way
that the nodes are updated through time evolution, have been
proposed and widely studied. The results of [3], [4], [5], [6]
show that different types of updating schemes produce differ-
ent behaviors of the same BN.

In the biological context, the synchronous updating scheme
(e.g., classical random Boolean networks – CRBNs [1]) was
criticized because of the assumption that the dynamics of gene
regulatory networks (GRNs) is deterministic and synchronous,
i.e., all genes change their expression levels simultaneously
[7]. Thus, the asynchronous updating scheme, in which all
genes take different time to change their expression levels,
is closer to biological phenomena [8], [9], [7]. For example, a
very recent work [10] has explicitly backed up the necessity
of asynchronous models for modelling GRNs over a realistic
proof-of-concept case study. The proposed alternative is the
non-deterministic asynchronous updating scheme (e.g., asyn-
chronous random Boolean networks – ARBNs [8]) with the as-
sumption that only one randomly selected gene can be updated
at a single step. However, it did not give encouraging results,
since the networks change drastically their properties due to
the non-determinism [11]. Moreover, this updating scheme has
also some disadvantages including the high complexity of the
state transition graph and the inclusion of many incompatible
or unrealistic pathways [12]. With this motivation, a new type
of updating, asynchronous but deterministic, was proposed [4],
[5]. The deterministic asynchronous updating scheme can help
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us to model and analyze biological networks more reasonably
[11], [13]. For example, we can model asynchronous phenom-
ena which are not random, a thing which is quite difficult
with the non-deterministic asynchronous updating scheme [11].
Furthermore, models with deterministic asynchronous updat-
ing scheme are particularly useful when information about the
kinetics of biological processes is known [14].

To date, there are various types of BNs with the determin-
istic asynchronous updating scheme: deterministic generalized
asynchronous random Boolean networks (DGARBNs) [5], de-
terministic asynchronous random Boolean networks (DARBNs)
[5], mixed-context random Boolean networks (MxRBNs) [11],
deterministic asynchronous (DA) models [15], and block-
sequential Boolean networks (BSBNs) [4]. They have been
widely used in modeling and analysis of gene regulatory net-
works [15], [13], [16], [17]. In this paper, we focus on DGARBNs
which is a typical type of deterministic asynchronous BNs.
There are three reasons for this choice.

Firstly, DGARBNs offer an interesting compromise between
CRBNs and ARBNs, which could provide a suitable modeling
formalism of various types of systems [18]. For example, the
authors of [19] applied the updating schemes of DGARBNs
and ARBNs to the model of the Spatial Prisoner’s Dilemma
game which is the most used game in the area of evolutionary
game theory. Based on simulations, they obtained that these
two updating schemes lead basically the same outcome of
the model. Recently, Martin Schneiter et al. [20] used BNs to
formulate a simplified pluricellular epithelium model, which
intends to present plausibly the self-organization of ciliary
beating patterns as well as of the associated fluid transport
across the airway epithelium. The simulation results show
that DGARBNs lead to more realistic dynamics (flexibility and
robustness) and may therefore be favored by evolution.

Secondly, DGARBNs are general and interesting mathemat-
ical objects since there is no restriction on their Boolean func-
tions and contexts. For example, CRBNs are a special case
of DGARBNs [5], [18]. Moreover, studying DGARBNs can be
a good starting point for further studies on more complex
networks such as DARBNs or MxRBNs [11]. This is reasonable
since both DARBNs and MxRBNs are constructed based on
DGARBNs and seem to be more computationally complex than
DGARBNs [11], [2].
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Lastly, to our best knowledge, all the existing studies for
DGARBNs are theoretical or simulation-based. For example,
Carlos Gershenson firstly proposed DGARBNs [5] and ana-
lyzed their dynamics by simulations [5], [11]. Li et al. [21]
proposed a semi-tensor product-based framework to study
many variants of asynchronous BNs including DGARBNs. This
approach is deeply theoretical but not practical since the sizes
of matrices are exponential with respect to the number of
nodes. Thus, analytical and practical studies for DGARBNs are
needed. In general, the deterministic behaviors of DGARBNs
make them relatively easy to analyze as compared to non-
deterministic asynchronous BNs (e.g., ARBNs) [5]. Since many
analytical and practical studies have been done for ARBNs [7],
[14], such studies for DGARBN are potentially possible.

In this paper, two central issues of gene regulatory networks
(see, e.g., [22]), attractor detection and optimal control, are well
studied. We first formulate the extended state transition graph
(ESTG) of a DGARBN. The state transition is encoded as a
satisfiability modulo theory (SMT) formula. This formulation is
a starting point for further analysis of DGARBNs in this paper.
Next, we formally state and prove several relations between
DGARBNs and other popular models including deterministic
asynchronous models [15], block-sequential Boolean networks
[4], generalized asynchronous random Boolean networks [5],
and mixed-context random Boolean networks [11]. We then
propose two SMT-based methods for attractor detection and
optimal control of DGARBNs. These methods are implemented
in a JAVA tool called DABoolNet. In order to highlight the scal-
ability of the proposed methods, two experiments on randomly
generated networks and one artificial network are conducted.
To our best knowledge, DABoolNet is the first analytical and
practical tool for attractor detection and optimal control of
DGARBNs. In addition, several case studies are presented to
show the applications of our methods. For attractor detection
in DGARBNs, we apply DABoolNet to two real biological
networks and compare the obtained results to the existing
results in the literature. We also use DABoolNet to verify
several insights into the dynamics of random Boolean networks
presented in [5], [11]. For optimal control of DGARBNs, we
apply DABoolNet to one real biological network.

The rest of this paper is organized as follows: Section 2 gives
preliminaries on DGARBNs. Section 3 presents the formulation
of ESTG. Section 4 presents the relations between DGARBNs
and other models. Based on ESTG, the SMT-based method
for finding attractors of DGARBNs is presented in Section
5. The proofs of all the lemmas and theorems in Sections 4
and 5 are presented in Supplemental material 1. Section 6
presents the formal definition and the SMT-based method for
optimal control of DGARBNs. Results of the two experiments
are shown in Section 7. Section 8 concludes the paper and
discusses open problems.

2 PRELIMINARIES

A deterministic generalized asynchronous random Boolean
network (DGARBN) has a set of n nodes (X = {x1, ..., xn}).
Each node xi is associated with a Boolean function fi (fi :
{0, 1}n → {0, 1}). Each node xi is also associated with two
parameters: pi ∈ N+ and qi ∈ N (qi < pi). pi defines the
period between two consecutive updates of node xi while qi
determines the time to the first update of node xi. We use
maxP as a parameter indicating the maximum allowed period
of a node (i.e., pi ≤ maxP,∀i ∈ {1, ..., n}). The set of all p′s

and q′s is called the context of a DGARBN. Example 1 is an
example of DGARBNs where ”∧”, ”∨”, and ”¬” denote the
Boolean logical operations CONJUNCTION, DISJUNCTION,
and NEGATION, respectively.

Example 1. A DGARBN includes two nodes (X = {x1, x2}). Its
Boolean functions and context are given by:

f1 = (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2), f2 = x1;

p1 = 1, p2 = 2, q1 = 0, q2 = 0.
(1)

xi(t) ∈ {0, 1} denotes the value of node xi at time t. A state
of a DGARBN at time t is a vector x(t) = (x1(t), ..., xn(t)). At
time t, node xi will be updated by xi(t + 1) = fi(x(t)) when
the modulus of time t over pi is equal to qi (i.e., t%pi = qi).
For example, at time t = 1, only node x1 of DGARBN (1) will
be updated. If two or more nodes will be updated, they will be
updated simultaneously (e.g., at time t = 0, node x1 and node
x2 of DGARBN (1) will be updated simultaneously). Then, the
current state x(t) will transit to the next state x(t+ 1). This is
a state transition. The dynamics of a DGARBN is deterministic
since x(t+1) is uniquely determined for given x(t). Especially,
if all p′s are 1, then the DGARBN becomes a CRBN in which
all the nodes will be updated simultaneously at any time t [5].

The dynamics of a DGARBN depends on the initial state (the
state of the DGARBN at time t = 0). There are 2n possible initial
states. Since the evolution of DGARBNs is based on modulus
arithmetic, we only need to consider the scaled time tscaled of
t to LCM (i.e., tscaled = t%LCM ) where LCM is the least
common multiple of all p’s [5]. Indeed, the pattern of updating
nodes is repeated after each LCM time steps. Note that the
visited states are not necessarily repeated. Figure 1 shows the
dynamics of DGARBN (1). Herein, circles denote states while
dashed circles denote initial states of the DGARBN. An arc and
its above text denote a state transition and the scaled time of t
when the state transition occurs, respectively. The DGARBN is
updated in a pattern with period of 2: x1 and x2 together, x1
alone. If DGARBN (1) starts with state 10, then x1 and x2 will
be updated simultaneously leading to state 01. Next, x1 will be
updated leading to state 01. In the next time step, the pattern
is repeated (i.e., x1 and x2 will be updated simultaneously).
However, the next state (i.e., 00) has not been visited.

00 10 01

11 10

00 10

01 00

0
1

0

1

0 1

01

0

1

0

1

Fig. 1: Dynamics of DGARBN (1).

Start from an initial state, the DGARBN will eventually lead
to an attractor since the number of states of the DGARBN is
finite. Definition 1 is a general definition of an attractor for all
types of BNs. An attractor is said to be a fixed point or a cyclic
attractor if it consists of only one state or at least two states,
respectively. The fixed points of a BN are the same regardless of
its updating scheme. The cyclic attractors of deterministic (e.g.,
DGARBNs) and non-deterministic (e.g., ARBNs) asynchronous
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BNs can be different. In non-deterministic asynchronous BNs,
the system oscillates irregularly among the states of a cyclic
attractor due to the randomness involved in the updating
scheme. In this case, the cyclic attractor is referred to as a loose
attractor [8]. In deterministic asynchronous BNs, the system
oscillates regularly among the states in a cyclic attractor due to
the deterministic dynamics. In this case, the cyclic attractor is
referred to as a limit cycle [23]. However, there is no systematic
definition for limit cycles of a DGARBN. Thus, we still use
the term of cyclic attractors for DGARBNs. Let reconsider
DGARBN (1). If it starts from 11, it will reach a fixed point
({11}). If it starts from 00, it will reach a cyclic attractor
({00, 10}). If it starts from 01 or 10, it will reach the same cyclic
attractor ({01, 00, 10}).

Definition 1. An attractor of a BN is a set of states satisfying any
state in this set can reach any state (including this state) in this set
and cannot reach any state that is not in this set.

3 EXTENDED STATE TRANSITION GRAPH

Although the definition of a DGARBN enables us to study
the behavior of a GRN in the long run, it does not provide
a systematic mean for its analysis. We here propose a synchro-
nization method for DGARBNs, which provides a synchronous
representation for the dynamics of a DGARBN. This method
can pave potential ways for analysis and control of DGARBNs.

We define an extended state of a DGARBN, which includes
a state of this DGARBN and the scaled time tscaled of time
t when reaching this state. We use xn+1 ∈ {0, ..., LCM − 1}
to represent the value of tscaled. We define the image of an
extended state es ∈ {0, 1}n×{0, ..., LCM−1} as a state [[es]]I ∈
{0, 1}n satisfying [[es]]Ii = esi, i = {1, ..., n}. Furthermore, we
have [[ES]]I =

⋃
es∈ES [[es]]

I where ES is a set of extended
states. For clarification, we denote an extended stated es by
([[es]]I ,esn+1). For example, (00, 1) means that x1 = 0, x2 = 0,
and x3 = tscaled = 1. Then, the state transition formula is given
as in (2) where xj denotes the current extended state; xj+1

denotes the next extended state; ”%” is the modulus operator;
”=” is the logical predicate EQUALITY. Herein, the scaled time
of the current extended state will increase by one; if it equals
to LCM , then it is set to 0. This characteristic is presented
by xj+1

n+1 = (xjn+1 + 1)%LCM . The value of the i-th node will
be updated if the modulus of time t over pi is equal to qi
and be not changed otherwise. The former case is presented
by (xjn+1%pi = qi ∧ (xj+1

i = fi(x
j)) while the latter case is

presented by (xjn+1%pi 6= qi ∧ (xj+1
i = xji )). Moreover, this

state transition formula is in form of an SMT formula in infix
notation [24]. Note that each xji (i = 1, ..., n) corresponds to a
Boolean SMT variable and each xjn+1 corresponds to an integer
SMT variable.

T (xj , xj+1) ≡ {xj+1
n+1 = (xjn+1 + 1)%LCM}∧

n∧
i=1

{(xjn+1%pi = qi ∧ (xj+1
i = fi(x

j))∨

(xjn+1%pi 6= qi ∧ (xj+1
i = xji ))}

(2)

Then, the dynamics of a DGARBN is captured by an ex-
tended state transition graph (ESTG). An ESTG is a directed
graph whose nodes and arcs denote extended states and state
transitions, respectively. A state transition from extended state
es to extended state es′ of this ESTG is characterized by (2) (i.e.,
T (es, es′) = true). Hereafter, we discuss about the number of

extended states of this ESTG. Since xn+1 ∈ {0, ..., LCM − 1},
we can have LCM×2n possible extended states. However, the
number of possible initial extended states is only 2n instead
of LCM × 2n since in an initial extended state, xn+1 is 0,
i.e., the start time is always 0. Thus, the ESTG may have less
than LCM × 2n extended states. The extended states, which
are not in the ESTG, are called spurious extended states. For
example, let consider a DGARBN of two nodes (X = {x1, x2}).
Its Boolean functions and context are given by (3). Its ESTG
is given in Figure 2(right). As we can see, the extended state
(00, 1) is not in this ESTG, thus it is a spurious extended state.

f1 = x1 ∨ (¬x1 ∧ x2), f2 = (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2)
p1 = 2, p2 = 1, q1 = 0, q2 = 0

(3)

By the definition of ESTG, each extended state in the ESTG
of a DGARBN has exactly one successor extended state. In the
case LCM = 1, two consecutive extended states of the ESTG
may be the same since tscaled is always 0. Thus, the ESTG can
have fixed points or limit cycles. We define a limit cycle of
length p > 1 as the sequence es0, ..., esp−1 of extended states
such that esj are pairwise distinct, esj+1 is the next extended
state of esj in the ESTG for all j ∈ {0, p−2}, and es0 is the next
extended state of esp−1 in the ESTG. Note that a fixed point
can be seen as a limit cycle of length 1. In the case LCM > 1,
two consecutive extended states are always different since they
at least differ in tscaled. Thus, the ESTG has only limit cycles.
Moreover, based on (2), we can easily imply that the length of
a limit cycle of the ESTG is a multiple of LCM .

Since an ESTG can capture the whole dynamics of a
DGARBN, the attractors of the DGARBN are represented by
fixed points or limit cycles of its ESTG. Since a fixed point may
only appear when LCM = 1, the length of an attractor (i.e., the
length of a fixed point or a limit cycle) is a multiple of LCM .
Especially, a fixed point {s} of the DGARBN is represented by
a limit cycle c of its ESTG where the length of c is LCM and
any extended state es in c satisfies [[es]]I = s.

Figure 2(left) shows the ESTG of DGARBN (1). Since LCM =
2, this ESTG has no fixed points. This ESTG has three
limit cycles including {(11, 0), (11, 1)}, {(00, 0), (10, 1)}, and
{(01, 0), (00, 1), (10, 0), (01, 1)}. {(11, 0), (11, 1)} corresponds to
the fixed point {11} of DGARBN (1) while {(00, 0), (10, 1)} and
{(01, 0), (00, 1), (10, 0), (01, 1)} correspond to the two cyclic at-
tractors {00, 10} and {01, 00, 10} of DGARBN (1), respectively.

(00,0)

(10,1)

(11,1) (11,0)

(10,0) (00,1)

(01,1) (01,0)

(00,0) (01,1)

(11,0) (11,1)

(10,0) (10,1)

(01,0)

Fig. 2: (left) ESTG of DGARBN (1). (right) ESTG of DGARBN
(3).

4 RELATIONS WITH OTHER MODELS

In this section, we will analyze relations between DGARBNs
and other models, such as, deterministic asynchronous (DA)
models [15], [25], [13], block-sequential Boolean networks [26],
[17], generalized asynchronous random Boolean networks [5],
[27], and mixed-context random Boolean networks [11]. The



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

obtained relations are theoretical findings contributing to un-
derstanding the dynamics of random Boolean networks. These
findings also pave the potential ways to analyze these other
models based on DGARBNs.

4.1 DGARBNs and DA models

In a DA model, each node xi is associated with a pre-selected
time unit γi ≥ 1 [13]. The update of a node depends on the
current time step by (4). If multiple nodes can update at time
t, then they will update synchronously.

xi(t+ 1) =

{
fi(x(t)) if t+ 1 = kγi, k ∈ {1, 2, ...}
xi(t) otherwise

(4)

Definition 2. Given a DA model as in (4). Let D be its cor-
responding DGARBN. D and the DA model share the same sets
of nodes and Boolean functions. The context of D is as follows:
pi = γi, qi = pi − 1, i ∈ {1, ..., n}.

Obviously, a DA model and its corresponding DGARBN by
Definition 2 have the same behaviors. Indeed, assume that the
node xi of the DA model will be updated at time t, i.e., t+1 =
kγi, k ∈ {1, 2, ...}. In the DGARBN, t%pi = (kγi − 1)%γi =
γi− 1 = qi, thus xi will also be updated at time t. This finding
allows us to directly apply the methods for DGARBNs to DA
models.

4.2 DGARBNs and block-sequential Boolean networks

A block-sequential Boolean network (BSBN) [26], [17] is a
tuple 〈V, F, d〉 where V = {x1, ..., xn} is the set of nodes,
F = {f1, ..., fn} is the set of Boolean functions associated
with the nodes, and d is a deterministic updating scheme (see
Definition 3). At each time step, nodes in a block are updated in
parallel, but blocks follow each other sequentially along with d,
leading to a new state. Since each state has only one outgoing
transition, a BSBN may have two types of attractors including
fixed points and limit cycles [26]. Note that the time unit of a
BSBN is nb(d) times of the time unit of CRBNs or DGARBNs.
Example 2 shows an example of BSBNs.

Definition 3 (Adapted from [26]). A (deterministic) updating
scheme on the set V of n nodes is a function d : {1, ..., n} →
{1, ...,m},m ≤ n. A block of d is the set Bi = {v ∈ V |d(v) =
i}, 1 ≤ i ≤ m. The number of blocks of d is denoted by nb(d) ≡ m.
Frequently, d will be denoted as a sequence of blocks, i.e., d = (j ∈
B1)(j ∈ B2)...(j ∈ Bnb(d)).

Example 2. Let B = 〈V, F, d〉 be a BSBN where V and F are given
as in DGARBN (1) and d = (x1)(x2). The STG of B is given in
Figure 3(left). For example, in state 00, x1 is updated, leading to a
new state 10, then x2 is updated, leading to a new state 11. Now,
(00, 11) is a state transition of B. As we can see, B has only one
fixed point ({11}).

Definition 4. Let B = 〈V, F, d〉 be a BSBN. Then, D is a DGARBN
such that its set of nodes is V and its set of Boolean functions is F
and its context is given as: pi = nb(d), qi = j − 1, xi ∈ Bj , i ∈
{1, ..., n}. Given a state s of B, the corresponding extended state of
s is [[s]]D where [[s]]Di = si, [[s]]

D
n+1 = 0, i ∈ {1, ..., n}.

Definition 4 gives the encoding of a BSBN as a DGARBN.
Figure 3(right) shows the ESTG of the encoded DGARBN of the
BSBN in Example 2. This ESTG has one limit cycle of length 2
({(11, 0), (11, 1)}). As we can see, a state s reaches a state s′ in

00

01

10

11

(00,0)

(10,1)

(11,1) (11,0)

(10,0) (00,1)

(01,1) (01,0)

Fig. 3: (left) STG of the BSBN. (right) ESTG of the encoded
DGARBN.

the BSBN if and only if the corresponding extended state of s
reaches the corresponding extended state of s′ in the encoded
DGARBN. For example, 00 reaches 11 if and only if (00, 0)
reaches (11, 0). We can also see that the set of attractors of
the BSBN one-to-one corresponds to the set of attractors of
the encoded DGARBN. Hereafter, we formalize the relations
between a BSBN and its encoded DGARBN. These relations
allow us to apply our methods for DGARBNs to BSBNs.

Theorem 1. Let B = 〈V, F, d〉 be a BSBN and D be its encoded
DGARBN by Definition 4. For any pair of states s and s′, we have
s′ is reachable from s in B iff [[s′]]D is reachable from [[s]]D in D.

Theorem 2. Let B = 〈V, F, d〉 be a BSBN and D be its encoded
DGARBN by Definition 4. Let AB and AD be the sets of attractors
of B and D, respectively. Then, AB one-to-one corresponds to AD .
Moreover, given an attractor att of B, its corresponding attractor ofD
is att′ satisfying att = [[att′]]B where [[ES]]B = {s|(s, 0) ∈ ES},
ES is a set of extended states.

4.3 DGARBNs and GARBNs
Generalized Asynchronous Random Boolean Networks
(GARBNs) are interesting mathematical objects and have
been widely studied [5], [21], [27], [28]. GARBNs have the
asynchronous and non-deterministic updating scheme. At
each time step, they randomly select any number of nodes to
update synchronously. This means that a GARBN can update
synchronously no node, only one node, some nodes, or all
the nodes. The STG of a GARBN has 2n nodes and up to 22n

arcs [5]. Thus, GARBNs are more complex than CRBNs. This
maybe makes the analysis of a GARBN more computationally
complex than that of its CRBN counterpart [27].

Example 3. Let G be the GARBN counterpart of DGARBN (1)
(i.e., the GARBN shares the sets of nodes and Boolean functions with
DGARBN (1)). The STG of G is shown in Figure 4. As we can see,
each arc of the ESTG of DGARBN (1) (see Figure 2(left)) corresponds
to an arc of the STG of G. For example, ((00, 0), (10, 1)) corresponds
to (00, 10) and ((10, 0), (01, 1)) corresponds to (10, 01). G has only
one attractor ({11}) while DGARBN (1) has three attractors. We
can see that {11} corresponds to the attractor {(11, 1), (11, 0)} of
DGARBN (1).

Obviously, all state transitions of a DGARBN will be covered
in the STG of its GARBN counterpart by the updating scheme
of GARBNs. See Example 3 as an illustration. Hereafter, we
formally present several relations between a DGARBN and its
GARBN counterpart in Lemma 1 and Theorem 3. Theorem 3
shows that given a DGARBN and its GARBN counterpart, each
attractor of the GARBN contains at least one attractor of the
DGARBN.
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00 01

10 11

Fig. 4: STG of the GARBN counterpart of DGARBN (1).

Lemma 1. Let D be a DGARBN and G be its GARBN counterpart.
Let es be an extended state of D and FRD({es}) be the set of
extended states reachable from es in D. Then, [[FRD({es})]]I ⊆
FRG({[[es]]I}).

Theorem 3. LetD be a DGARBN and G be its GARBN counterpart.
Let AD and AG be the sets of attractors of D and G, respectively.
Then, there exists a mapping m : AG → AD with [[m(att)]]I ⊆ att
for all att ∈ AG . Moreover, m(att1) 6= m(att2) for all att1, att2 ∈
AG , att1 6= att2. That means m is an injection.

In [27], we have stated and formally proved several relations
between attractors of a CRBN and attractors of its GARBN
counterpart. Theorem 5 of [27] shows that any attractor of a
GARBN always contains an attractor of its CRBN counterpart.
Since a CRBN is a special DGARBN, Theorem 5 of [27] is a
special case of Theorem 3.

4.4 DGARBNs and MxRBNs
To deal with the lack of knowledge on real contexts of
DGARBNs, Carlos Gershenson proposed a new type of
Boolean models called mixed-context random Boolean net-
works (MxRBNs) [11], [2]. He introduced the idea of mixed
context, where a mixed context is a statistical mixture of a set
of pure contexts. The updating scheme of MxRBNs is basically
like that of DGARBNs. However, MxRBNs have to make a
random choice between pure contexts at each time step, making
their dynamics non-deterministic and generating a probability
structure that is non-Kolmogorovian (quantum-like) [11].

An MxRBN is a DGARBN with M ≥ 1 pure contexts. Each
pure context consists of p’s and q’s as in DGARBNs. At each
time step, we randomly select one pure context among M pure
contexts and use it in the DGARBN. Hence, the dynamics of
an MxRBN can be captured by overlapping the ESTGs of its
M constituent DGARBNs. See Example 4 for an example of
MxRBNs.

Example 4. Given an MxRBN M of two nodes (X = {x1, x2}).
Its Boolean functions and M = 2 pure contexts are given by:

f1 = (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2), f2 = x1;

M1 : p1 = 1, p2 = 2, q1 = 0, q2 = 0;

M2 : p1 = 1, p2 = 1, q1 = 0, q2 = 0.

(5)

Let D1 and D2 be the DGARBNs corresponding to M1 and M2,
respectively. Figure 5 shows the ESTG of M. This ESTG is formed
by overlapping the ESTG of D1 (normal lines) and the ESTG of D2

(dashed lines).

In Example 4,M has two attractors including {(11,0), (11,1)}
and {(00, 0), (10, 1), (10, 0), (01, 1), (01, 0), (00, 1)}. Note that an
extended state of an MxRBN may have more than one outgoing
transition by the introduction of non-determinism to MxRBNs,
leading to the existence of complex attractors as in ARBNs [7].
Moreover, D1 has three attractors including {(00, 0), (10, 1)},

(00,0)

(10,1)

(11,1) (11,0)

(10,0) (00,1)

(01,1) (01,0)

Fig. 5: ESTG of MxRBN (5).

{(11, 0), (11, 1)}, and {(10, 0), (01, 1), (01, 0), (00, 1)}; D2 has
two attractors including {(11, 0)} and {(00,0), (10,0), (01,0)}.
We can see that each attractor of M always contains at least
one attractor of D1. This observation is also valid for the case
of D2. We generalize this observation in Theorem 4.

Theorem 4. Let M be an MxRBN of M pure contexts. Let D be
an arbitrary DGARBN among M constituent DGARBNs ofM. Let
AM and AD be the sets of attractors of M and D, respectively.
Then, there exists a mapping m : AM → AD with m(att) ⊆ att
for all att ∈ AM. Moreover, m(att1) 6= m(att2) for all att1, att2 ∈
AM, att1 6= att2. That means m is an injection.

Theorem 4 suggests us a promising way to find all attractors
of an MxRBN. First, we can find attractors of one of its
constituent DGARBNs by applying our method presented in
Section 5. Then, we can filter the set of DGARBN attractors
by checking the reachability property in this MxRBN. This
idea is similar to the filtering algorithm for finding GARBN
attractors based on CRBN attractors, which is presented in
[27]. Proposing an efficient method for attractor detection in
MxRBNs is one of our future work.

5 ATTRACTOR DETECTION

Attractors correspond to steady states which are important
long-term behaviors of GRNs. Attractors of GRNs are linked to
phenotypes [1] and functional cellular states, such as, prolifer-
ation, apoptosis, or differentiation [29]. Therefore, in addition
to the usage in understanding GRNs, analysis of attractors
could provide new insights into systems biology (e.g., the
origins of cancer) [30]. Attractors also play a crucial role in
the development of new drugs [31].

Attractor detection in various types of BNs has attracted
much attention. Many studies has been done but they mainly
focus on CRBNs (e.g., [7], [32], [33]) and ARBNs (e.g., [7],
[34], [35]). There are very few studies (e.g., [18], [25]) specif-
ically done for DGARBNs. However, they are theoretical or
simulation-based studies. This motivates algorithms for ana-
lytically and practically finding attractors of DGARBNs.

5.1 Satisfiability modulo theory-based method

Dubrova and Teslenko proposed an efficient SAT-based method
for finding attractors of CRBNs [32]. Since the ESTG of a
DGARBN is deterministic like the state transition graph (STG)
of a CRBN, it is potential to extend the SAT-based method to
that for DGARBNs. However, it is difficult to directly use SAT
for DGARBNs because the state transition formula (2) contains
integer variables (e.g., xjn+1) and the modulus operator. Since
integers are bounded, we can encode xjn+1 by a bit-vector [24]
of size m (m is the smallest integer larger than or equal to
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the logarithm to the base 2 of LCM ) and then use the bit-
blasting technique [36] to transform (2) to an equivalent SAT
formula. Satisfiability Modulo Theory (SMT) may provide a
more natural encoding. Modern SMT solvers (e.g., Z3 [24]) use
the efficient algorithms of SAT solvers as their solving cores,
thus can handle very large problem instances. Moreover, the
bit-blasting technique is also integrated into some SMT solvers
as a solving tactic [24]. Therefore, we here propose a new
SMT-based method for finding attractors of DGARBNs. Note
that proposing ESTG paves the way to extend the method by
Dubrova and Teslenko for CRBNs to that for DGARBNs.

The intuitive idea of the proposed SMT-based method is
as follows. We search for a p-length path (i.e., this path
makes p transitions between extended states) in the ESTG of a
DGARBN. Since a fixed point of the DGARBN is represented
by a limit cycle of length LCM in the ESTG of this DGARBN,
p can start with LCM (LCM ≥ 1). If a path is found and
it contains a limit cycle, we add this limit cycle to the set of
marked attractors. In an ESTG, an extended state has a unique
next extended state, thus once a path reaches a limit cycle, it
never leaves this cycle. This suggests a way to check whether
a path contains a limit cycle by checking whether the last
extended state of the path occurs at least twice in this path.
In the next iterations, we only search for paths such that their
last extended states are not in the set of marked attractors. If
a path is found and it is cycle-free, we increase p (e.g., double
p) and continue the search for a path with the new length. If
a path does not exist, we can terminate the search. Since the
ESTG is deterministic like the STG of a CRBN, the proposed
SMT-based method always terminates and correctly finds all
attractors of the DGARBN (see Theorem 5).

Theorem 5. The proposed SMT-based method terminates and cor-
rectly finds all attractors of a DGARBN.

In each iteration of our method, the finding of a p-length path
can be performed by using an SMT solver (we use Z3 [24] in
this paper). Let A be the set of attractors which is updated
through the iterations. Note that such a path must satisfy two
conditions. Firstly, the value of the scaled time of its start
extended state must be 0. As mentioned in Section 3, there may
be some spurious extended states which are not in the ESTG
of the DGARBN. This condition guarantees that all extended
states along with the path are always in the ESTG since the start
extended state is one of the possible initial extended states of
the DGARBN. Secondly, its last extended state must be not in
A as mentioned in the previous paragraph. The path can be
encoded as an SMT formula P (6). Then, we simply use Z3 to
solve P .

P ≡ (x0n+1 = 0) ∧
p−1∧
j=0

T (xj , xj+1) ∧ ¬χ(AF , xp) (6)

In (6), xj denotes the (j + 1)-th extended states of the path.
Then, x0 and xp denote the start and end extended states of
the p-length path, respectively. T (xj , xj+1) represents the state
transition from xj to xj+1 where T is the transition formula
of the DGARBN (see (2)). Thus,

∧p−1
j=0 T (x

j , xj+1) represents
a p-length path of the DGARBN. (x0n+1 = 0) represents the
first condition of the path. ¬χ(AF , xp) represents the second
condition of the path where AF is the flattened set of A (i.e.,
AF is the set of extended states); χ(AF , xp) is the characteristic
formula representing all extended states of AF in terms of
variables of xp. The characteristic formula of a set of extended

states is defined based on the characteristic formula of an
extended state: χ(AF , xp) =

∨
s∈AF χ(s, x

p). The characteristic
formula of an extended state s in terms of variables of xp is
defined as χ(s, xp) =

∧n+1
i=1 (si = xpi ).

Let see a running example on DGARBN (1). Our method
starts with p = LCM = 2 and A = ∅. We have:

T (x0, x1) = {x13 = (x03 + 1)%2} ∧ {(x03%1 = 0∧
(x11 = (x01 ∧ x02) ∨ (¬x01 ∧ ¬x02))) ∨ (x03%1 6= 0 ∧ x11 = x01)}
∧ {(x03%2 = 0 ∧ x12 = x01) ∨ (x03%2 6= 0 ∧ x12 = x02)};
T (x1, x2) = {x23 = (x13 + 1)%2} ∧ {(x13%1 = 0∧
(x21 = (x11 ∧ x12) ∨ (¬x11 ∧ ¬x12))) ∨ (x13%1 6= 0 ∧ x21 = x11)}
∧ {(x13%2 = 0 ∧ x22 = x11) ∨ (x13%2 6= 0 ∧ x22 = x12)};
P = (x03 = 0) ∧ T (x0, x1) ∧ T (x1, x2).

We then use Z3 to solve P . Clearly, a path is found. Sup-
pose that this path is (00, 0) → (10, 1) → (00, 0) (see
Figure 2(left)). Since the last extended state ((00, 0)) occurs
twice, we obtain a limit cycle of length 2. Now, we can add
this limit cycle ({(00, 0), (10, 1)}) to A. The flatted set AF is
{(00, 0), (10, 1)} and χ(AF , x2) = χ((00, 0), x2) ∨ χ((10, 1), x2)
where χ((00, 0), x2) = (x21 = 0) ∧ (x22 = 0) ∧ (x23 = 0),
χ((10, 1), x2) = (x21 = 1)∧ (x22 = 0)∧ (x23 = 1). In the next itera-
tion, our method continues to search a path of length 2 with the
new formula P = (x03 = 0)∧T (x0, x1)∧T (x1, x2)∧¬χ(AF , x2).
Suppose that the next found path is (00, 1)→ (10, 0)→ (01, 1).
This path is cycle-free since the last extended state ((01, 1))
occurs only one. Now, we increase p to 4 and start the next
iteration with p = 4 and A = {{(00, 0), (10, 1)}}. By running
two more iterations, our method terminates and all attractors
are detected with A = {{(00,0), (10,1)}, {(11,0), (11,1)}, {(00,1),
(10,0), (01,1), (01,0)}}.

In the proposed SMT-based method, the last value of p is
called the unfolding depth of the DGARBN. Obviously, in each
iteration of the method, the number variables and the number
of clauses of P depend on both n and p. In the ESTG of the
DGARBN, starting from an extended state, we must go through
at least LCM−1 different extended states to reach an extended
state with the same tscaled. It seems to make the diameter of
the ESTG longer. Thus, if LCM is large even when n is small,
the diameter may be very large. The diameter of the ESTG is
an upper bound of the unfolding depth, leading the unfolding
depth of the DGARBN may be very large. In this case, P will
have too many variables and clauses, and the time for solving
P may be extremely long.

5.2 Case study

In this subsection, we apply our method for attractor detection
in DGARBNs to two real biological networks and compare the
obtained results to the existing results on these networks in the
literature.

The first network is the reduced network of the guard cell
ABA signal transduction network analyzed in [13]. The BN
of this reduced network includes three nodes including x1
standing for CIS, x2 standing for Ca2+

c , and x3 standing for
Ca2+ATPase. Its Boolean functions are given by: f1 = x2, f2 =
x1∧¬x3, f3 = x2. Each node xi is associated with a time unit γi,
forming a DA model. Saadatpour et al. applied their method
to this network with many different choices of time units (i.e.,
many different DA models). We here encode a DA model as a
DGARBN (see Subsection 4.1). Then, we apply our SMT-based
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TABLE 1: Boolean functions of the cell cycle network.

Gene Boolean function
CycD CycD
Rb (¬CycD ∧ ¬CycB) ∧ ((¬CycE ∧ ¬CycA) ∨ p27)
E2F (¬Rb ∧ ¬CycA ∧ ¬CycB) ∨ (p27 ∧ ¬Rb ∧ ¬CycB)
CycE (E2F ∧ ¬Rb)
CycA (¬Rb ∧ ¬Cdc20 ∧ ¬(Cdh1 ∧ UbcH10)) ∧ (E2F ∨ CycA)
p27 (¬CycD∧¬CycB)∧((¬CycE∧¬CycA)∨(p27∧¬(CycE∧

CycA)))
Cdc20 CycB
Cdh1 (¬CycA ∧ ¬CycB) ∨ Cdc20 ∨ (p27 ∧ ¬CycB)
UbcH10 ¬Cdh1 ∨ (Cdh1 ∧ UbcH10 ∧ (Cdc20 ∨ CycA ∨ CycB))
CycB ¬Cdc20 ∧ ¬Cdh1

method to find attractors of the encoded DGARBN. The results
are given as follows.

For the case γ1 = 2γ2, γ2 = 2k+1, γ3 = 2, k = 2, we have the
DA model has a limit cycle of length γ2 +1+2k = 4k+2 = 10
by Proposition 1 of [13]. Note that in [13], the authors claim the
cycle length is only 2k + 2 because of their way for counting
the time staying each state. Following their proof for this
proposition, the correct length should be 4k+2. By applying our
method, the encoded DGARBN has two limit cycles of length
10. One of these two limit cycles is {(101,0), (111,9), (111,8),
(111,7), (111,6), (110,5), (100,4), (100,3), (100,2), (101,1)}. This
result is consistent with Proposition 1 of [13].

For the case γ1 = 2γ2, γ2 = 2k, γ3 = 2, k = 2, we have
the DA model has a limit cycle of length γ2 + 2k = 4k = 8
by Proposition 2 of [13]. Note that in [13], the authors claim
the cycle length is only 2k because of their way for counting
the time staying each state. Following their proof for this
proposition, the correct length should be 4k. By applying our
method, the encoded DGARBN has two limit cycles of length 8.
One of these two limit cycles is {(110,5), (110,4), (100,3), (100,2),
(101,1), (101,0), (111,7), (111,6)}. This result is consistent with
Proposition 2 of [13].

The second network is the mammalian cell cycle network
analyzed in [17]. The BN of this network includes 10 nodes
(genes) and its Boolean functions are given in Table 1. The
authors of [17] analyzed this network under different deter-
ministic updating schemes. For each deterministic updating
scheme, we encode the corresponding BSBN as a DGARBN
(see Subsection 4.2). Then, we apply our SMT-based method to
find attractors of the encoded DGARBN. The results are given
as follows.

For the case the deterministic updating scheme is
(CycD,Rb,Cdc20, Cdh1, CycA)(p27, UbcH10, CycB)
(E2F )(CycE), the BSBN has one fixed point with CycD = 0,
a limit cycle of length 4 with CycD = 1, and a limit cycle
of length 8 with CycD = 0 (see Figure 7 of [17]). By
applying our method, the encoded DGARBN has a limit
cycle of length 4, a limit cycle of length 16, and a limit
cycle of length 32. Since LCM of the encoded DGARBN is
4, three attractors of the encoded DGARBN correspond to
three attractors of the BSBN. See Table 2 for details of these
DGARBN attractors. Herein, the order of the nodes in a state
is (CycD, p27, E2F,CycE,CycA, p27, Cdc20, Cdh1, UbcH10,
CycB). Note that in each DGARBN attractor, we only show
the images of extended states whose tscaled are 0. The result is
consistent with the relations presented in Subsection 4.2.

For the case the deterministic updating scheme is
(CycD, p27, Cdc20, Cdh1, UbcH10, CycB)(E2F )(CycE)
(Rb,CycA), the BSBN has one fixed point with CycD = 0,
a limit cycle of length 2 with CycD = 0, a limit cycle of

TABLE 2: Details of DGARBN attractors.

Figure 7
{0100010100}
{1011000100, 1000101010, 1000100011, 1000100100}
{0000100100, 0011000100, 0011001010, 0000010011, 0100100100,
0011010100, 0000101010, 0000100011}

Figure 8

{0100010100}
{0111110100, 0000000100}
{0000100011, 0000100000, 0011100100, 0011000110, 0011001110,
0000001011}
{1011001110, 1000001011, 1000100011, 1000100000, 1011100100,
1011000110}

length 6 with CycD = 0, and a limit cycle of length 6 with
CycD = 1 (see Figure 8 of [17]). By applying our method,
the encoded DGARBN has a limit cycle of length 4, a limit
cycle of length 8, and two limit cycles of length 24. Since
LCM of the encoded DGARBN is 4, four attractors of the
encoded DGARBN correspond to four attractors of the BSBN.
See Table 2 for details of these DGARBN attractors. The result
is consistent with the relations presented in Subsection 4.2.

5.3 Verifying the existing insights

Many numerical experiments were conducted to discover se-
varal insights into the dynamics of DGARBNs [5], [11]. How-
ever, their method is incomplete and is limited to small net-
works (n ≤ 10). Since DABoolNet can find exactly all attractors
of a DGARBN and can be applied to large networks (see
Subsection 7.1), we here reproduce these experiments with
larger networks to verify these insights. We hope that our
method will be helpful in further research on DGARBNs and
their applications.

Following the experimental method by [5], [11], we randomly
generated 1000 N -K BNs with K = 3 (i.e., each node has ex-
actly K = 3 input nodes) and different numbers of nodes (n =
3, 4, ..., 15) by using Bool Net R package [37]. We then randomly
generated a context for each BN with maxP = 3. In total, we
have 13000 randomly generated DGARBNs. We applied the
SMT-based method to find attractors of each DGARBN and its
CRBN counterpart (i.e., maxP = 1). For each DGARBN or its
CRBN counterpart, the number of attractors and the percentage
of extended states in attractors were reported.

Figure 6 shows the average number of attractors of the
randomly generated networks with different n. We here can
see that the average number of attractors of DGARBNs for low
maxP (maxP = 1 and maxP = 3) has a linear increment
proportional to n. This observation is consistent with the
insight on the average number of attractors presented in Section
3 of [11].

Figure 7 shows the percentage of attractor states (in a base-
10 logarithmic scale) of the randomly generated networks with
different n. By observing this figure, we can see that the
percentage of attractor states seems to decrease exponentially
as n increases for both CRBNs and DGARBNs. However,
the percentage of attractor states decreases slower for low
maxP (maxP = 1) than for a higher one (maxP = 3). This
observation is consistent with the insight on the percentage
of attractor states presented in Section 3 of [11]. Another
observation, which can be obtained from this figure, is that
CRBNs (maxP = 1) have more states in attractors than
DGARBNs (maxP = 3). This is consistent with the insight on
the percentage of attractor states presented in Subsection 3.2 of
[5].
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Fig. 6: Average number of attractors varying n.
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Fig. 7: Average percentage of attractor states n (log scale).

6 OPTIMAL CONTROL

Control of biological systems is one of the central issues in
systems biology [38]. In theory, biological systems are complex
and contain highly non-linear components and thus existing
methods in control theory cannot be directly applied to control
of biological systems. In practice, control of cells may be useful
for systems-based drug discovery and cancer treatment [38],
[14], [39]. Thus, it is an important and interesting challenge to
develop theories and methods for control of biological systems
[22]. Since BNs are highly non-linear systems and has been
widely used in modeling biological systems, it is reasonable to
try to develop methods for control of BNs.

In recent years, several approaches have been developed for
control of BNs. We can classify them into two main directions.
The first one (e.g., [39], [40], [41], [42], [43], [44], [45]) uses node
perturbations while the second one (e.g., [46], [47], [48]) uses
external inputs to control a BN. The second direction assumes
that the set of control inputs is known and fixed for a finite se-
quence of steps. Somehow this is not very realistic, concerning

the effort in searching for potential drug targets [22]. However,
this direction is still useful since (1) extensive studies have been
done on selecting and analyzing the minimum set of control
inputs [49], [50] and (2) some methods of the first direction can
be cast into the second direction [41]. To our best knowledge,
there is no study specially designed for DGARBNs. Although
optimality may rarely be the main constraint compared to
correct behaviors of systems in experiments, the optimal control
problem is still useful and interesting since it is more general
than the standard control problem [22], [48]. Therefore, we will
focus on optimal control of DGARBNs.

We here formally define optimal control of DGARBNs as in
Definition 5 adapted from [22]. In this definition, internal nodes
stand for usual nodes (i.e., genes or proteins), control nodes
can stand for external interventions (e.g., drugs, radiation, or
chemotherapy), the initial state can stand for a disease or
cancerous state, the target state can stand for a healthy or
normal state. Usually, ui(k) = 0 implies that ui is not applied
at time k, while ui(k) = 1 implies that ui is applied at time k
with the application cost gi. Note that the cost vector g may
be fixed or not fixed over time. In the biological context, g
may depend on the current state of the system, i.e., g may be
represented as a function gf : U × {0, 1}n → N. Moreover,
we can consider various types of cost, such as, the cost of
applying drugs, the total harmful effects of the applied drugs,
the total concentration of some given genes [51]. Representing
the function gf or these types of cost as SMT formulas is easy
thanks to the expressive power of SMT. For simplicity, we
assume that g is fixed over time and the cost function is the
cost of applying control nodes. Example 5 shows a DGARBN
with a setting for optimal control.

Definition 5. Given a DGARBN including a set of internal nodes
(X = {x1, ..., xn}) and a set of control nodes (U = {u1, ..., um}),
an initial state sini ∈ {0, 1}1×n, a target state star ∈ {0, 1}1×n,
a target time M , a cost vector g ∈ N1×m. Note that control
nodes can appear in Boolean functions of the DGARBN, i.e., fi :
{0, 1}n+m → {0, 1} (i = 1, ..., n). Let decide whether or not there
exists a control sequence of 0-1 control vectors 〈u(0), ..., u(M − 1)〉
such that x(0) = sini, x(M) = star , and the linear cost function
C =

∑M−1
j=0 (

∑m
i=1(ui(j)× g(ui))) is minimum. Then, output one

if it exists.

Example 5. A DGARBN includes three internal nodes (x1, x2, x3)
and two control nodes (u1, u2). Its setting for optimal control is given
by:

f1 = ¬u1, f2 = x1 ∧ u2, f3 = x1 ∨ x2;
p1 = 2, p2 = 1, p3 = 2; q1 = 1, q2 = 0, q3 = 0;

g(u1) = 1, g(u2) = 2; sini = 000, star = 011.

(7)

We here consider two control modes (time-sensitive and
non-time-sensitive) for optimal control of DGARBNs as for
optimal control of other systems [52]. In the time-sensitive
mode, the condition x(M) = star must be strictly satisfied,
i.e., the DGARBN must reach the target state at exactly the
target time M (as in Definition 5). The time-sensitive mode
is often used in standard forms of optimal control problems
of BNs [53]. It is useful when we want, for example, to find
a drug treatment over a given time frame [0,M ] minimizing
the cost of using the drugs. In many applications, we may
want, for example, to find a drug treatment such that the
cost of using the drugs is minimum and the treatment time
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should be as early as possible before a given time M . In this
case, the non-time-sensitive mode is useful. In the non-time-
sensitive mode, the condition x(M) = star can be relaxed,
i.e., the DGARBN can reach the target state before or at time
step M . Specifically, the two last sentences of Definition 5 are
replaced by: Let decide whether or not there exists a control
sequence of 0-1 control vectors 〈u(0), ..., u(M ′ − 1)〉 such that
x(0) = sini, x(M ′) = star , M ′ ≤M , and the linear cost function
C =

∑M′−1
j=0 (

∑m
i=1(ui(j) × g(ui))) is minimum. Then, output

one if it exists.
Langmead and Jha proposed an efficient SAT-based method

for control of CRBNs [46]. Our proposed method is inspired by
this SAT-based method. However, there are some differences
between our method and the SAT-based method. Firstly, the
SAT-based method is applied to CRBNs while our method is
applied to DGARBNs, which are more general than CRBNs.
Secondly, the SAT-based method solves the standard control
problem while our method solves the optimal control problem,
which is more general than the standard control problem.
Thirdly, the SAT-based method only supports the time-sensitive
mode while our method supports both the time-sensitive and
non-time-sensitive modes.

6.1 Time-sensitive mode
For the time-sensitive mode, our intuitive idea is as follows.
We first encode an M -length path from x0 to xM in the ESTG
of the DGARBN as an SMT formula P (11). We then solve
P under minimizing the cost function C in Z3 (see [54] for
optimization in Z3). If SAT (P ), then a control sequence and an
optimum cost, which can be easily obtained from the satisfying
assignments of the corresponding SMT variables, are released.
Otherwise, ”there are no control policies” is released.

In (11), Tstart (8) expresses that the path starts with sini at
time t = 0 and Tend (10) expresses that the path ends with star

at time t = M . Clearly, we can easily adjust Tstart and Tend

to express the case of multiple initial states and/or multiple
target states. This is useful since in the biological context we
often only consider the values of some dominant genes, other
genes can receive arbitrary values. TM stands for M transitions
of this path. Note that T (xj , xj+1) in (9) is a bit different from
T (xj , xj+1) in (2). We here replace fi(x

j) in (2) by fi(x
j , uj)

where uj is the vector of values of control nodes at time j.

Tstart ≡ (x0n+1 = 0) ∧
n∧

i=1

(x0i = sini
i ) (8)

TM ≡
M−1∧
j=0

T (xj , xj+1) (9)

Tend ≡
n∧

i=1

(xMi = stari ) (10)

P ≡ Tstart ∧ TM ∧ Tend (11)

Let see a running example on DGARBN (7). In the time-
sensitive mode, we obtain a control sequence as
〈(0, 0), (0, 0), (0, 0), (1, 1)〉 and the minimum cost is C = 3 for
M = 4. This result is shown in Table 3. In Table 3, Column ”t”
denotes the time of evolution (not scaled to LCM ), Column
”Updated nodes” denoted the nodes which will be updated at
time t. When M = 5, there are no control sequences. However,
in the non-time-sensitive mode, we will obtain the control
sequence as for the case M = 4.

TABLE 3: The case M = 4.

Updated nodes t x1 x2 x3 u1 u2 cost
x2, x3 0 0 0 0 0 0 0
x1, x2 1 0 0 0 0 0 0
x2, x3 2 1 0 0 0 0 0
x1, x2 3 1 0 1 1 1 3

4 0 1 1

6.2 Non-time-sensitive mode

Obviously, optimal control of DGARBNs in the non-time-
sensitive mode is harder than that in the time-sensitive mode.
For standard control of DGARBNs, we can simply find the first
target time Mfirst (0 ≤Mfirst ≤M ) in which the control con-
dition is satisfied (i.e., there exists a control sequence driving
the DGARBN from sini to star at time Mfirst). However, for
optimal control of DGARBNs, the minimum cost of the case
M =Mfirst may not be the smallest minimum cost (the target
time corresponding to this smallest minimum cost is called
Mmin, 0 ≤ Mmin ≤ M ). Thus, exact methods are needed for
optimal control of DGARBNs in the non-time-sensitive mode.
We here propose a method to solve this problem.

Based on the method for the time-sensitive mode, we modify
the SMT formula (11) to represent an M -length path from x0

to xM in the ESTG of the DGARBN such that along with this
path, once we reach an extended state satisfying the following
condition, all next extended states of the path will be equal to
this extended state (i.e., there are no updates). The condition
means that the values of internal nodes of the extended state
are same as that of the target state star and is represented
by

∧n
i=1(x

j
i = stari ). The state transition formula of such a

path is shown in (12). If the condition does not hold, then we
update the DGARBN as usual by the state transition formula T .
Otherwise, we do not update the DGARBN. Note that we add a
new variable rj to indicate either the updating case (rj = 1) or
the non-updating case (rj = 0). This helps us to represent the
new cost function and to easily obtain the real control sequence.

The SMT formula P ′ of such a path is shown in (14). The
cost function is also adjusted as C′ =

∑M−1
j=0 (

∑m
i=1(ui(j) ×

g(ui) × r(j))) where r(j) corresponds to the variable rj . We
then solve P ′ under minimizing the cost function C′ in Z3.
If SAT (P ′), then a control sequence and an optimum cost
are released. Otherwise, ”there are no control policies” is
released. The optimum cost can be directly obtained from
the satisfying assignment of the SMT variable C′. The control
sequence can be obtained by first obtaining a sequence of 0-1
control vector 〈u(0), ..., u(M)〉 from the satisfying assignments
of the corresponding SMT variables, and then excluding the
spurious vectors. A control vector u(j) is said to be spurious
if the satisfying assignment of rj is 0. Note that Mmin can
be determined as the number of control vectors in the control
sequence. Furthermore, if we want to minimize both the cost
and the target time, we can simply adjust the cost function,
e.g, C′ =

∑M−1
j=0 (

∑m
i=1(ui(j)× g(ui)× r(j))× (M + 1)+ r(j)).

The adjusted cost function guarantees that the cost is always
minimized first, then the target time is minimized. However,
since the cost function becomes more complex, the running
time may be longer.
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T ′(xj , xj+1) ≡ {T (xj , xj+1) ∧ ¬
n∧

i=1

(xji = stari ) ∧ (rj = 1)}

∨ {
n∧

i=1

(xj+1
i = xji ) ∧

n∧
i=1

(xji = stari ) ∧ (rj = 0)}

(12)

T ′M ≡
M−1∧
j=0

T ′(xj , xj+1) (13)

P ′ ≡ Tstart ∧ T ′M ∧ Tend (14)

Let us reconsider the running example in Subsection 6.1 with
M = 5 and the non-time-sensitive mode. We here change the
target state star to 111. By applying the proposed method,
we can obtain the minimum cost C′ = 2 and a sequence of
control vectors 〈(0, 0), (0, 0), (0, 1), (0, 0), (0, 0)〉. We also have
r0 = 1, r1 = 1, r2 = 1, r3 = 0, r4 = 0. By excluding
the spurious control vectors, we obtain a control sequence
〈(0, 0), (0, 0), (0, 1)〉. Herein, Mmin = 3 and is optimal.

6.3 Case study
In this subsection, we apply our method for optimal control of
DGARBNs to the apoptosis network, which is very important
for programmed cell death and has been widely studied [55].
The BN of this network includes 11 internal nodes and 1 control
node. Its Boolean functions are given in Table 4. In this BN,
x7 = 0 and x9 = 1 implies cell death while x7 = 1 and x9 = 0
implies cell survival.

TABLE 4: Boolean functions of the BN of the apoptosis network.

Gene Node Boolean function
TNF u
T2 x1 ¬x8 ∧ u
IKKa x2 ¬x6 ∧ ¬x6 ∧ u
NFKB x3 ¬x5

NFKBnuc x4 x3 ∧ ¬x5

IKB x5 (¬x2 ∧ x4 ∧ u) ∨ (¬x2 ∧ x4 ∧ ¬u)
A20a x6 x4 ∧ u
IAP x7 (x4 ∧ ¬x9 ∧ u) ∨ (x4 ∧ ¬x9 ∧ ¬u)
FLIP x8 x4

C3a x9 ¬x7 ∧ x10

C8a x10 (x1 ∨ x9) ∧ ¬x11

CARP x11 (x4 ∧ ¬x9 ∧ u) ∨ (x4 ∧ ¬x9 ∧ ¬u)

Then, we randomly generated four different contexts with
maxP = 3 for this BN since we do not know the knowledge
on the real context of the apoptosis network. We now have four
different random DGARBNs. The setting for optimal control of
all the four DGARBNs is given as follows. The initial state was
set to (0, ..., 0). The values of x7 and x9 in the target state were
set to 0 and 1, respectively. The other nodes in the target state
can receive arbitrary Boolean values. That means the objective
of this control is to guide the network toward cell death states.
The target time M was set to 50. Since there is only one control
node, we simply set g(u) = 1. Herein, we consider the non-
time-sensitive mode.

Next, we applied our method to the four random DGARBNs.
The obtained results are given in Table 5. Column ”result”
denotes whether a control sequence exists (yes) or not (no).
Column ”cmin” denotes the optimal cost. ”-” denotes the case
there are no control sequences, cmin and Mmin are undeter-
mined. From these results, we can see that the activation of
cell death can be controlled by manipulating the value of the
control node.

TABLE 5: Results on optimal control of the apoptosis network.

Network Result cmin Mmin

random-1 yes 2 9
random-2 no - -
random-3 yes 1 7
random-4 yes 3 38

7 EXPERIMENTS

Our methods have been implemented in a JAVA tool inte-
grating the Z3 solver called DABoolNet. An executable file of
DABoolNet and some example networks are available at: https:
//github.com/giang-trinh/daboolnet. To our best knowledge,
BooleanNet [25] is the only practical tool for analysis of DA
models. However, a DA model is only a special DGARBN
(see Subsection 4.1) and BooleanNet is only a simulation tool.
Thus, it is difficult to compare DABoolNet with other existing
tools with respect to attractor detection and optimal control of
DGARBNs. We here only focus on how well our methods scale
up.

In order to evaluate the scalability of our methods, we
designed two experiments as follows. In the first experiment,
we applied our method for attractor detection in DGARBNs
to randomly generated DGARBNs. In the second experiment,
we applied our method for optimal control of DGARBNs to
one artificial example. All experiments were run on a PC with
Intel(R) Core(TM) i7 2.40 GHz processor and 16 GB of memory.

7.1 First experiment

In this experiment, we randomly generated 24 DGARBNs with
different numbers of nodes and maxP = 3. All 24 DGARBNs
have the same LCM = 6. We then ran DABoolNet to find
attractors of these DGARBNs. The time limit was set to four
hours for each DGARBN.

Table 6 shows the results of this experiment. Column ”n”
stands for the number of nodes. Column ”a× l” stands for the
number and length of attractors computed by DABoolNet. The
computational time (in seconds) is given in Column ”time”.
From these results, we see that our method can find attractors
of large DGARBNs within practical computational time. Note
that since the ESTG of a DGARBN may have LCM × 2n

extended states, naive approaches (e.g., constructing the ESTG
and then applying graph algorithms) are intractable when n is
large.

TABLE 6: Results of the first experiment.

n a× l time n a× l time
10 2 x 6 2.40 130 16 x 12 2312.64
20 8 x 6 14.49 140 14 x 12 342.61
30 10 x 6 49.37 150 8 x 6, 8 x 12, 4 x

36
711.71

40 16 x 6, 8 x 12 124.72 160 24 x 12 11996.69
50 10 x 12, 2 x 24, 4

x 36
529.95 170 6 x 12 1135.65

60 8 x 24 318.25 180 2 x 12 132.50
70 5 x 12 210.00 190 16 x 12 657.86
80 9 x 12, 2 x 24 324.91 200 4 x 6, 8 x 18, 2 x

36, 2 x 72
2902.37

90 8 x 6 304.19 250 10 x 6, 12 x 30 11338.33
100 4 x 6 136.90 300 5 x 6, 1 x 12, 12

x 30
8290.07

110 3 x 6, 1 x 12 88.64 350 timeout timeout
120 24 x 12 820.93 400 timeout timeout

https://github.com/giang-trinh/daboolnet
https://github.com/giang-trinh/daboolnet
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7.2 Second experiment

In this experiment, we consider one artificial example. The
artificial DGARBN includes nX nodes and nU control nodes
(nX > nU ). Its Boolean functions are given in Table 7.
Its context was randomly generated with maxP = 3 (i.e.,
LCM ≤ 6). Note that in our proposed methods for optimal
control of DGARBNs, the number of variables and the number
of clauses of the path formula do not depend on LCM but
depend on the number of nodes n and the target time M
(see Section 6). Thus, we simply set maxP to 3. The cost
vector was set as G(ui) = 1 + i%2 (i = 1, ..., nU ). The initial
state was fixed to (1,...,1) and the target state was obtained by
randomly flipping some nodes in the initial state. In order to
evaluate the scalability of our methods for optimal control of
DGARBNs, we varied nX , nU , and M . Since optimal control of
DGARBNs in the non-time-sensitive mode is harder than that
in the time-sensitive mode, we only ran DABoolNet in the non-
time-sensitive mode for each combination of nX , nU , and M .
Since the time for solving optimal control is usually less than
the time for solving attractor detection, the time limit was set
to one hour for each combination. Moreover, we also applied
two variants of our method for optimal control of DGARBNa
in the non-time-sensitive mode (sayM) to each combination to
compare their performance. Herein, the first variant (say M1)
corresponds to the case of minimizing only the cost while the
second variant (sayM2) corresponds to the case of minimizing
both the cost and the target time in M.

TABLE 7: An artificial example.

Node Boolean function
x1 x1 ∧ x2 ∧ ¬u1

xi (i = 2, ..., nU ) xi−1 ∧ xi ∧ xi+1 ∧ ¬ui

xi (i = nU + 1, ..., nX − 1) xi−1 ∧ xi ∧ xi+1

xnX xnX−1 ∧ xnX

TABLE 8: Results of the second experiment.

M1 M2

nX nU M result Mmin time Mmin time
200 10 20 no - 1.04 - 0.98
200 10 40 no - 2.02 - 2.19
200 10 80 yes 7 37.23 7 37.91
200 20 20 no - 1.14 - 1.53
200 20 40 yes 1 7.72 1 6.49
200 20 80 no - 3.69 - 3.87
300 10 20 yes 3 2.66 3 2.70
300 10 40 no - 2.70 - 3.43
300 10 80 no - 5.61 - 5.78
300 20 20 yes 10 2.90 10 3.01
300 20 40 yes 23 10.19 5 18.35
300 20 80 yes 7 40.30 1 45.03
400 10 20 yes 19 3.01 4 3.01
400 10 40 yes 5 15.95 5 17.27
400 10 80 yes 4 119.86 4 130.80
400 20 20 no - 2.08 - 2.11
400 20 40 yes 8 20.17 8 20.85
400 20 80 yes 4 62.58 4 66.23
500 10 20 no - 2.58 - 2.41
500 10 40 no - 14.03 - 10.47
500 10 80 no - 9.52 - 9.60
500 20 20 yes 4 6.87 4 6.34
500 20 40 yes 6 21.93 2 21.83
500 20 80 yes 13 71.98 1 80.78

Table 8 shows the results of this experiment. Column ”result”
denotes whether a control sequence exists (yes) or not (no).
Column ”time ” stands for the computational time (in seconds)
for each combination of nX , nU , and M . ”-” denotes the

case there are no control sequences, Mmin is undetermined.
In some combinations (e.g., nX = 300, nU = 20,M = 40),
Mmin obtained by M2 is less than Mmin obtained by M1.
Moreover,M2 is slower thanM1 in most combinations. These
observations are consistent with the analysis on M2 in Sub-
section 6.2. In addition, the computational time of M1 or M2

for each combination is reasonable even when nX and M are
large (e.g., nX = 500 and M = 80). From these observations,
we see that our methods can solve optimal control in the
non-time-sensitive mode of large DGARBNs within practical
computational time. We also suggest to preferably use M1

when we only focus on minimizing the cost of applying control
nodes and to preferably useM2 when we focus on minimizing
both the cost of applying control nodes and the target time.

8 CONCLUSION

In this paper, we have proposed the formulation of ESTG. An
ESTG captures the whole dynamics of a DGARBN and paves
potential ways to analyze and control this DGARBN. Based on
this formulation, we have proposed two SMT-based methods
for attractor detection and optimal control of DGARBNs, which
are two central issues in systems biology. For optimal control
of DGARBNs, our method deals with both the time-sensitive
mode and the non-time-sensitive mode. Two experiments are
designed to evaluate the scalability of our methods. Experi-
mental results show that our methods can be applied to large
networks. We have also stated and proved several relations
between DGARBNs and other models including DA mod-
els, BSBNs, GARBNs, and MxRBNs. These relations not only
contribute to understanding the dynamics of random Boolean
networks but also pave potential ways to analyze these models
based on DGARBNs.

To show the applications of our methods, we have applied
our methods to three real biological networks (two networks
for attractor detection and one network for optimal control).
The results obtained by our methods are consistent with the
existing results on these networks in the literature. We have
also used our method for attractor detection in DGARBNs to
verify some existing numerical insights into the dynamics of
CRBNs and DGARBNs.

For attractor detection of DGARBNs, our method suffers an
inherent problem of SMT. When LCM of a DGARBN is large
(e.g, LCM ≥ 30), the unfolding depth in our method may be
too large even for small DGARBNs. As a consequence, P will
have too many variables and clauses, and the time for solving
P may be extremely long. To mitigate this problem, further
improvement for SMT (e.g., variable ordering) is needed.

Since SMT supports a variety of data types and arithmetic
operators, it is potential to extend our methods to that for
multi-valued models of DGARBNs where each node can re-
ceive multiple values, and more operators are introduced. We
also plan to extend our methods to incorporate gene perturba-
tion experiments on DGARBNs.

DGARBNs are particularly useful when information about
the kinetics of biological processes is known [14]. However,
prior kinetic information is usually not available. In this
case, the context (i.e., p′s and q′s) can be randomly sam-
pled from a time interval that is within biological limitations
[14], [28]. Additional, MxRBNs are a non-deterministic exten-
sion of DGARBNs to deal with the case of lacking knowl-
edge on real contexts. Deterministic asynchronous probabilistic
Boolean functions (DA-PBNs) [53] are a stochastic extension of



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

DGARBNs to deal with the case of lacking information on real
Boolean functions. Therefore, proposing efficient methods for
attractor detection and optimal control of MxRBNs or DA-PBNs
is one of our future work.
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