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An FVS-based Approach to Attractor Detection in
Asynchronous Random Boolean Networks
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Abstract—Boolean networks (BNs) play a crucial role in modeling and analyzing biological systems. One of the central issues in the
analysis of BNs is attractor detection, i.e., identification of all possible attractors. This problem becomes more challenging for large
asynchronous random Boolean networks (ARBNs) because of the asynchronous and non-deterministic updating scheme. In this paper,
we present and formally prove several relations between feedback vertex sets (FVSs) and dynamics of BNs. From these relations, we
propose an FVS-based method for detecting attractors in ARBNs. Our approach relies on the principle of removing arcs in the state
transition graph to get a candidate set and the reachability property to filter the candidate set. We formally prove the correctness of
our method and show its efficiency by conducting experiments on real biological networks and randomly generated N -K networks. The
obtained results are very promising since our method can handle large networks whose sizes are up to 101 without using any network
reduction technique.
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1 INTRODUCTION

Boolean networks (BNs) play a crucial role in modeling and
analysis of complex biological networks (e.g., gene regulatory
networks [1]). They have also been applied to many areas
beyond systems biology, such as, mathematics, neural net-
works, social modeling, and robotics (see [2]). Many different
types of updating schemes of BNs (synchronous, asynchronous,
deterministic, or non-deterministic), which regulate the way
the nodes are updated through time evolution, have been
proposed and widely studied. The results of [3], [2], [4] show
that different types of updating schemes produce different
behaviors of the same BN.

In the landscape of dynamics of a dynamical system, we
can distinguish between the transient and long-run dynamics.
In BNs or other qualitative models, the long-run dynamics
are referred to as attractors. An attractor of a BN is a set of
states such that the BN can not escape from this set once
entered it. In the biological context, attractors of a BN are
linked to phenotypes [5] or functional cellular states (e.g.,
proliferation, apoptosis, or differentiation) [6]. Thus, analysis
of attractors could provide new insights into systems biology
(e.g., the origins of cancer [7]). Moreover, attractors also play an
important role in the development of new drugs [8]. Therefore,
attractor detection is of great importance in analyzing biological
systems modeled as BNs.

In practice, attractor detection of a BN can become very
expensive as the size n of the BN grows since the number
of possible states of a BN is exponential in the number of
nodes. Many algorithms and tools have been developed in
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the efforts to efficiently solve this problem. For small net-
works (e.g., n ≤ 50), attractors can be simply detected by
various enumeration and simulation methods [9], [10], [11].
For larger networks, attractors can be efficiently detected with
two techniques including binary decision diagram (BDD) and
satisfiability (SAT) solvers. In BDD-based methods [12], [13],
the transition relation of a BN is encoded with BDD and the
calculation of attractors exploits advantages of the efficient
BDD operations. However, these methods still rely on the
exhaustive traversal of the whole state space, making their
efficiency is strictly prevented when the BN becomes large,
e.g., n is over 100. SAT-based methods [14] encode the attractor
detection problem as a satisfiability problem, then exploit the
efficient implementation of SAT solvers. They can handle larger
networks within shorter time compared to BDD-based meth-
ods. There are also some methods [15], [16], [11] exploiting the
relations between network structure and network dynamics.

The above-mentioned methods are mainly designed for syn-
chronous BNs in which all the nodes will be updated simul-
taneously. In biology, the updating process of each gene may
spend various time from fractions of a second to hours [4].
With the need to represent various time scales, asynchronous
BNs are considered more realistic [17]. In this paper, we focus
on asynchronous random Boolean networks (ARBNs) [18], [4]
where at each time step a randomly selected node is updated
and there is no restriction on Boolean functions.

Attractor detection in ARBNs becomes more challenging
especially for large networks because of the asynchronous and
non-deterministic updating scheme. There are two main types
of attractors [13]: singleton attractors and cyclic attractors. A
singleton attractor is formed by only one state. A cyclic attractor
is formed by one or more overlapping cycles of states. In syn-
chronous BNs, an attractor is either a singleton state or a cycle
since each state has exactly one outgoing transition. Under
the asynchronous and non-deterministic updating scheme, each
state may have multiple outgoing transitions. Therefore, an
attractor of an ARBN, in general, can be seen as a terminal
strongly connected component in the state transition graph of
this ARBN. This complex attractor structure makes SAT-based
methods ineffective since the respective SAT formulas become
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prohibitively large.
A few methods have been proposed in the efforts to effi-

ciently solve attractor detection in ARBNs. The first effort is the
BDD-based method [12] as an extension of that for synchronous
BNs. The authors then improved this method by exploiting
the relations between attractors of an ARBN and attractors
of its synchronous counterpart [13]. Their implemented tool
(called genYsis) has also been used widely in the research
communities. In 2011, Skodawessely proposed a method [19]
to detect ARBN attractors based on feedback vertex sets and
the principle of reducing dynamics. This method seems to be
promising but it can only handle the networks whose sizes are
up to 38. Recently, a decomposition method [20] was proposed
to deal with large BNs. This method decomposes a large ARBN
into smaller components (called blocks) based on the network
structure, detects attractors in these blocks, and then recovers
the attractors of the original ARBN. Clearly, the efficiency of
this method largely depends on the sizes of the decomposed
blocks.

Inspired by the principle of reducing dynamics by [19],
we propose a new method to handle attractor detection in
asynchronous Boolean networks, especially for large ones. The
main idea of our method is similar to the idea of [19]. However,
we here present several generalized and improved results in
both theoretical and practical aspects. We first present and
prove several relations between feedback vertex sets (FVSs) and
dynamics of BNs. From these relations, we propose an FVS-
based method for detecting all possible attractors of an ARBN.
Our approach relies on an FVS of this ARBN to get a candidate
set of states such that each attractor of the ARBN contains at
least one state of this set. We then filter the candidate set by
checking reachability property in the ARBN. The obtained set
one-to-one corresponds to the set of all attractors of the ARBN
and is sufficient since starting from a state s in an attractor,
we can enumerate this attractor by listing all states reachable
from s. Our method includes several constituent steps. For each
step, we formalize the corresponding problems, analyze them,
and propose efficient solutions for them. The correctness of our
method is formally proved. We also propose a preprocessing
to reduce the computational burden while still preserving the
correctness. The experimental results confirm the usefulness of
the preprocessing and are very promising since our method
can handle large networks whose size are up to 101 without
using any network reduction technique.

The rest of this paper is organized as follows: Section 2 gives
preliminaries on Boolean networks, attractors, feedback vertex
sets, and Petri net unfoldings. Section 3 presents the relations
between FVSs and BNs. Section 4 presents the FVS-based
method for attractor detection in ARBNs and its constituent
steps. Results of the experiments are shown in Section 5. Section
6 concludes the paper and discusses open problems.

2 PRELIMINARIES

2.1 Boolean networks and attractors

A Boolean network N = (V, F ) consists of a set of n nodes
V = {x1, x2, ..., xn} and a set of n Boolean functions F =
{f1, f2, ..., fn}. In the context of gene regulatory networks, V
and F correspond to a set of genes and a set of gene regulatory
rules, respectively. The ith node is associated to a Boolean
variable xi ∈ {0, 1} and a Boolean function fi : {0, 1}|IN(fi)| →
{0, 1} where IN(fi) denotes the set of input nodes of Boolean
function fi. Note that we use xi to refer to the ith node and its

associated Boolean variable. The interaction graph of a BN N ,
denoted by IG(N ), is the directed graph defined as follows:
the set of nodes is V and, for all xi, xj ∈ V (not necessarily
distinct), there is an arc (xj , xi) if xj ∈ IN(fi).

A state of the network is given by a vector x = (x1, ..., xn) ∈
{0, 1}n. At each time step, node xi can update its value by
x′i = fi(x) where x is the current state of the BN and x′i is the
next value of xi. For simplicity, we use the notation fi(x) even
if IN(fi) ⊂ V . An updating scheme specifies the way the nodes
will be updated. The BN can transit from a state to a state based
on its updating scheme. This is a state transition. Dynamics of
a BN are captured by a state transition graph (STG). A STG
is a directed graph whose nodes and arcs denote states and
state transitions, respectively. In this paper, we use x

N−→ x′

for the transition (x, x′) in the STG of N . We write N−→* for
the reflexive transitive closure of N−→. FRN (S) denotes the set
of states reachable from the states of the set S in the STG of
N . Formally, FRN (S) = {s′|s N−→*s′, s ∈ S}. We can also use
x→ x′, x→*x′, or FR(S) if the BN is already specified.

In general, a Boolean function can be formed by any com-
binations of any logical operators (e.g., AND ∧, OR ∨, and
NEGATION ¬) on variables associated with its input nodes. In
this paper, we focus on random Boolean networks (i.e., there
is no restriction on Boolean functions). There are two major
types of random BNs [3] including Classical Random Boolean
Networks (CRBNs) and Asynchronous Random Boolean Net-
works (ARBNs). CRBNs were proposed by Stuart Kauffman
[21] to model gene regulatory networks in cells. They have a
synchronous updating, i.e., all nodes at time t + 1 take into
account nodes at time t for their updating. Since CRBNs are
deterministic, the STG of a CRBN has 2n nodes and 2n arcs.
ARBNs were firstly studied by Harvey and Bossomaier [18].
Their updating is asynchronous and non-deterministic. At each
time step, a single node is selected at random in order to be
updated. The STG of an ARBN has exactly 2n nodes and may
have up to n× 2n arcs.

Attractors are a key behavior of a BN. The formal definition
of an attractor is given in Definition 1. In the STG of a BN,
an attractor is equivalent to a terminal strongly connected
component. Since the STG of a BN has 2n nodes and at least
2n arcs, naive approaches for finding attractors (e.g, explicitly
building the STG and then applying graph algorithms) are
intractable when n is large.

Definition 1. An attractor of a BN is a set att of states satisfying
any state in att can reach any other state in att and can not reach
any other state that is not in att.

We can classify two main types of attractors: singleton and
cyclic attractors. A singleton attractor (or a fixed point) has only
one state. A cyclic attractor has at least two states and is formed
by overlapping one or more cycles of states. A CRBN and its
ARBN counterpart share the same set of singleton attractors.
Singleton attractors can easily be identified by calculating the
fixed points (i.e., the states satisfying x = f(x)). A cyclic
attractor of a CRBN only consists of one cycle while a cyclic
attractor of an ARBN can consist of at least two overlapping
cycles. This makes identification of ARBN attractors more
difficult.

We use the BN shown in Example 1 as a straight illustrative
example used in the following sections. Figure 1 shows its
interaction graph. Figure 2 shows two STGs of the CRBN
counterpart and the ARBN counterpart of this BN. Herein, the
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CRBN has one fixed point ({000}) and two cyclic attractors
({100, 011} and {101, 111}). The ARBN has one fixed point
({000}) and one cyclic attractor ({101, 111}).

Example 1. Consider a BN of three nodes (x1, x2, and x3). Its
Boolean functions are given by:

f1 = x2 ∨ x3,

f2 = x1 ∧ ¬x2,

f3 = x1.

x1x2 x3

Fig. 1: Interaction graph of the BN in Example 1.
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Fig. 2: STGs of (a) the CRBN and (b) the ARBN.

2.2 Feedback vertex sets

Feedback vertex set (FVS) is an important concept in graph
theory. A feedback vertex set of a graph is a set of nodes such
that removing them makes the graph acyclic. For example, the
interaction graph of the BN of Example 1 has three possible
FVSs including {x1, x2}, {x2, x3}, {x1, x2, x3}. {x1, x2} and
{x2, x3} are two minimum FVSs. The problem of finding a
minimum feedback vertex set is known to be NP-hard [22].
Some approximation algorithms have been developed [23]
to solve this problem. However, such algorithms are usually
complicated. Thus, we here use a simple greedy algorithm
for finding an (not necessarily minimum) FVS. This greedy
algorithm relies on strongly connected components (SCCs).

We first recall some definitions on graph and an observation
on FVSs. Let IG(N ) = (V,E) be the interaction graph of the
BN N . IG(N ) is a directed graph. An SCC c is trivial if c is
made of a single vertex v and (v, v) 6∈ E, and is non-trivial
otherwise. A vertex v is a self vertex if (v, v) ∈ E. Note that if
v is a self vertex, all FVSs of IG(N ) must contain v.

Our greedy algorithm is given in Algorithm 1. We here use
Tarjan’s algorithm [24] for finding the set of SCCs. Then, the
set of non-trivial SCCs is easily obtained. IG(N )[c] denotes the
subgraph of IG(N ) induced by the set of vertices c. IG(N )−
Vself is equivalent to IG(N )[V \Vself ].

Algorithm 1 Algorithm for finding a feedback vertex set

Input: A directed graph IG(N ) = (V,E)
Output: A feedback vertex set U

1: U ← ∅
2: Vself ← the set of self vertices of IG(N )
3: U ← U ∪ Vself

4: IG(N )← IG(N )− Vself

5: C ← the set of non-trivial SCCs of IG(N )
6: while C 6= ∅ do
7: Randomly pick an SCC c from C
8: Pick a vertex v with the maximum outdegree from c
9: U ← U ∪ {v}

10: Cc ← the set of non-trivial SCCs of IG(N )[c\{v}]
11: C ← C ∪ Cc

12: end while
13: return U

2.3 Petri net unfoldings

Petri nets [25] are a basic model of parallel and distributed
systems. A Petri net (PN) is a bipartite graph whose nodes are
either places or transitions. In this paper, we only consider 1-
safe Petri nets where the number of tokens of each place is
either 0 (unmarked) or 1 (marked). The set of marked places
forms a marking of the PN. If the PN has an arc (p, t), then p is
called an input place of t. If the PN has an arc (t, p), then p is
called an output place of t. A transition is enabled if all its input
places are marked. When a transition is enabled, it can fire. The
firing of this transition makes all its input places unmarked and
then makes all its output places marked, modifying the current
marking of the PN. Note that, when multiple transitions are
enabled, only one transition can fire.

Formally, a 1-safe PN is a tuple P = 〈P, T, pre, post,M0〉.
P and T are sets of places and transitions, respectively. pre ⊆
P×T is the set of all arcs from places to transitions while post ⊆
T × P is the set of all arcs from transitions to places. For any
place p, we say pre-set of p is the set •p = {t ∈ T |(t, p) ∈ post}
and post-set of p is the set p• = {t ∈ T |(p, t) ∈ pre}. For any
transition t, we say pre-set of t is the set •t = {p ∈ P |(p, t) ∈
pre} and post-set of t is the set t• = {p ∈ P |(t, p) ∈ post}.
A subset M ⊆ P of the places is called a marking. M0 is the
initial marking of the PN.

A transition t of a 1-safe PN is enabled at a marking M if
and only if •t ⊆ M . The firing of t leads to a new marking
M ′ specified by M ′ = (M\•t) ∪ t•. We denote this marking
transition by M

t−→ M ′. A marking M ′ is called reachable
from a marking M if there exists a firing sequence w = t1t2...

over T such that M
t1−→ M1

t2−→ M2... −→ M ′. A marking
reachable from M0 is called a reachable marking of the PN. All
reachable markings of the PN and their marking transitions are
represented by a directed graph called the reachability graph.

Figure 3a shows an example 1-safe PN. The places are
represented by circles and the transitions are represented by
squares. The arcs and the initial marking are represented by
the arrows and dots in the marked places, respectively. Herein,
M0 = {p1}. At this marking, t1 and t2 are enabled. Figure 3b
shows the reachability graph of this PN.

Petri net unfoldings [26] aim at representing the reachability
graph of a 1-safe Petri net by exploiting concurrency between
transitions to prune redundant interleavings of these transi-
tions. The unfolding of a 1-safe PN P can be seen as an acyclic
Petri net U that has the same behaviors as P . In general, U
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p1

t1 t2

p2

(a)

{p1}

{p2} ∅

t1 t2

(b)

Fig. 3: (a) A 1-safe Petri net and (b) its reachability graph
with the initial marking {p1}. In (b), the text above each arrow
denotes the fired transition.

is infinite. However, there exists a finite prefix PU of U since
P is safe. Generally speaking, a finite prefix is an acyclic Petri
net whose sets of places, transitions, and arcs are finite and
are subsets of the sets of places, transitions, and arcs of U ,
respectively. PU is complete since every reachable marking
of P has a reachable counterpart in PU . Thus, PU represents
the set of reachable markings of P . See [27] for more details
on finite complex prefix. Regarding the reachability problem
of 1-safe Petri nets, we can build PU and then easily check
whether a marking M reaches a marking M ′. This function is
implemented in Mole [28] which is an efficient tool for checking
reachability property of 1-safe Petri nets based on unfoldings.
Mole also supports a function allowing that building an un-
folding immediately stops when a specific transition t can be
added to this unfolding.

3 RELATIONS BETWEEN FVSS AND BNS

We formally formulate and prove the below lemmas and the-
orems on relations between dynamics of a BN and it feedback
vertex sets.

Lemma 1. Let N be a BN whose interaction graph is acyclic. Then
the STG of N has no cycles.

Proof: We prove this lemma by using induction on the size
n of N .

Let G be the STG of N . The case n = 1 is trivial since G has
clearly only fixed points. Assume that G has no cycles with
n = k.

We consider the case n = k + 1. There exists a node xi

without incoming arcs since IG(N ) is acyclic. Then, xi is
fixed, i.e., fi = ai, ai ∈ {0, 1}. In a cycle of G, the value
of xi must not be changed since xi is always ai once its
value receives ai. xi can be either 0 or 1. Let fN1 , ..., fNk+1

be Boolean functions of N . Then, N1 = (V N1 , FN1) and
N2 = (V N2 , FN2) be two BNs of k nodes where V N1 =
V N2 = V N \{xi}, fN1

j = fN
j (x1, ..., xi/ai, xi+1, ..., xk+1), f

N2
j =

fN
j (x1, ..., xi/(1 − ai), xi+1, ..., xk+1) (j ∈ {1, ..., k + 1}, j 6= i).

Let G1 and G2 be the STGs of N1 and N2, respectively.
Obviously, a cycle of G corresponds to a cycle of either N1

or N2. Since the interaction graphs of N1 and N2 are acyclic
and have k nodes, G1 and G2 have no cycles by the induction
hypothesis. Therefore, G has no cycles.

Lemma 2. Let N be a BN and its STG be G. Let U be an FVS of
N . Then G has no cycles such that the values of the nodes in U does
not change through these cycles.

Proof: We prove this lemma by contradiction and using
Lemma 1.

Let n be the number of nodes of N . Without loss of general-
ity, we reorder the nodes of N such that U = {x1, ..., xk} and
V N \U = {xk+1, ..., xn}.

Assume that G has a cycle such that the values of the nodes
in U do not change through this cycle (1). That is the values
of xi (i ∈ {1, ..., k}) are fixed. Let xi = ai, ai ∈ {0, 1} (i ∈
{1, ..., k}). Then, N ′ = (V N

′
, FN

′
) be a BN of n − k nodes

where V N
′
= V N \U , fN

′
j = fNj (x1/a1, ..., xk/ak, xk+1, ..., xn)

(j ∈ {k+1, ..., n}). Let G′ be the STG of N ′. Obviously, G′ has
a cycle by (1). IG(N ′) is acyclic since U is an FVS. So, G′ has
no cycles by Lemma 1. This is a contradiction. Hence, G has
no cycles such that the values of the nodes in U do not change
through these cycles.

Theorem 1. Let N be a BN and its STG be G. Let U =
{xi1 , ..., xik} be an FVS of N . Let B = {bi1 , ..., bik} be the set
of retained values corresponding to the nodes of U . G′ is the graph
obtained by removing all arcs (x, x′) from G where

∨k
j=1(xij ↔

bij ∧ x′ij ↔ 1 − bij ) (1) holds. That means an arc (x, x′) will be
removed if it changes at least one node xij ∈ U from bij to 1− bij .
Then G′ has no cycles.

Proof: We prove this theorem by using Lemma 2 to show
that all cycles of G disappear in G′.

Let c be an arbitrary cycle of G. By Lemma 2, there is a node
xi ∈ {xi1 , ..., xik} such that xi changes its value through this
cycle. Since c is a cycle of states, it must contain an arc (x, x′)
such that xi = bi and x′i = 1 − bi. (x, x′) satisfies (1) and will
be removed. Then, c will disappear in G′.

Since c is arbitrary, all cycles of G will disappear in G′. Hence,
G′ has no cycles. In other words, G′ has only fixed points.

000 001

010

100

011

111 101 110

(a)

000 001

010

100

011

111 101 110

(b)

Fig. 4: The reduced STGs of the ARBN of the BN in Example
1 corresponding to (a) U = {x1, x2}, b1 = 0, b2 = 0 and (b)
U = {x1, x2}, b1 = 0, b2 = 1.

Theorem 1 shows that the reduced STG of a BN has only
fixed points. For example, let N be the ARBN of the BN
in Example 1, G be as in Figure 2b, U be {x1, x2}. If B =
{b1, b2} = {0, 0}, then G′ is as in Figure 4a. The removed arcs
are (001, 101), (010, 110), (011, 111), (100, 110), and (101, 111).
Obviously, G′ has only fixed points.

Intuitively, the removal of arcs of the STG of the BN may only
increase the number of attractors; each attractor of the original
STG contains at least one attractor of the reduced STG. The
relations between the original STG and the reduced STG are
given in Lemma 3 and Theorem 2.

Lemma 3. Let N be a BN and its STG be G. G′ is the graph
obtained by removing an arc (x, y) from G. Let A and A′ be the sets
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of attractors of G and G′, respectively. Then, there exists a mapping
m : A → A′ with m(att) ⊆ att for all att ∈ A and m(att1) 6=
m(att2) for all att1, att2 ∈ A, att1 6= att2 (1).

Proof: We consider all two cases as follows.
Case 1: (x, y) is not in any attractor of G. Obviously, all

attractors of G are still in G′. Choose the mapping m such
that m(att) = att for all att ∈ A.

Case 2: (x, y) is in an attractor of G. Since attractors are
pairwise disjoint, (x, y) is only in one attractor of G say att.
Obviously, x ∈ att and y ∈ att. Let F be the forward reachable
set of x in G′ (i.e., the set of all states reachable from x). Then
F ⊆ att. There is an attractor att′ of G′ such that att′ ⊆ F .
So, att′ ⊆ att. All attractors of A\{att} of G are still in G′.
Choose the mapping m such that m(s) = s for s ∈ A\{att}
and m(att) = att′. Moreover, let Fy be the forward reachable
set of y in G′. Then Fy ⊆ att. There is an attractor att′y of
G′ such that att′y ⊆ Fy . So, we can also choose the mapping
m such that m(s) = s for s ∈ A\{att} and m(att) = att′y .
Since att′ may be different to att′y , the mapping m may not
be uniquely determined. For example, consider the ARBN
of the BN in Example 1. Its STG G is as in Figure 2b. We
have, A = {{000}, {101, 111}}, G′ = G − (111, 101). Then,
A′ = {{000}, {111}}. Obviously, there is a mapping m where
m({000}) = {000} and m({101, 111}) = {111}.

From Case 1 and Case 2, there exists a mapping m : A→ A′

with m(att) ⊆ att for all att ∈ A. Since attractors are pairwise
disjoint, m(att1) 6= m(att2) for all att1, att2 ∈ A, att1 6= att2.
Hence, m satisfies (1).

Therefore, we can conclude the proof.

Corollary 1. Let N be a BN and its STG be G. G′ is the graph
obtained by removing an arc (x, y) from G. Let A and A′ be the sets
of attractors of G and G′, respectively. Then, |A′| ≥ |A|.

Proof: By Lemma 3, there is a mapping m : A → A′ with
m(att) ⊆ att for all att ∈ A and m(att1) 6= m(att2) for all
att1, att2 ∈ A, att1 6= att2. Obviously, m is an injection. Hence,
|A′| ≥ |A|.

Theorem 2. Let N be a BN and its STG be G. G′ is the graph
obtained by removing arcs from G. Let A and A′ be the sets of
attractors of G and G′, respectively. Then, the exists a mapping m :
A→ A′ with m(att) ⊆ att for all att ∈ A and m(att1) 6= m(att2)
for all att1, att2 ∈ A, att1 6= att2 (1).

Proof: We prove this theorem by using induction on p (the
number of the removed arcs) and using Lemma 3.

Without loss of generality, we order the removed arcs as
e1, ..., ep, p ≥ 1. The base case, p = 1, clearly holds. Indeed,
there is a mapping m satisfying (1) by Lemma 3. Assume that
there is a mapping m satisfying (1) for all p ≤ k.

The inductive case, p = k + 1, also holds. G′ = G −
{e1, ..., ek+1}. Let G′′ = G − {e1, ..., ek} and A′′ be the set
of attractors of G′′. By the induction hypothesis, we have a
mapping m1 : A→ A′′ with m1(att) ⊆ att for all att ∈ A and
m1(att1) 6= m1(att2) for all att1, att2 ∈ A, att1 6= att2. G′ =
G′′ − {ek+1}. By Lemma 3, we have a mapping m2 : A′′ → A′

with m2(att) ⊆ att for all att ∈ A′′ and m2(att1) 6= m2(att2)
for all att1, att2 ∈ A′′, att1 6= att2. Choose m = m2◦m1. Clearly,
m satisfies (1).

Therefore, we can conclude the proof.
Note that these lemmas and theorems do not depend on the

updating scheme of the BN. This allows to extend our method
for ARBNs presented in this paper to that for other types of

BNs.

4 FVS-BASED METHOD

From the relations presented in Section 3, we propose an FVS-
based method for finding all attractors (fixed points and cyclic
attractors) of an ARBN. This method includes many steps. We
first show the general approach of our method. Then, we show
each step in detail.

4.1 General approach
The intuitive idea of our method is as follows. Given an ARBN
A, let G be the STG of A. We systematically remove arcs from
G to obtain a new acyclic STG G′. Let F be the set of fixed
points of G′. The calculation of F will be deeply discussed
in Subsection 4.2. In G, we then filter out F to get the new
set A which one-to-one corresponds to the set of attractors of
A. The obtained set is sufficient since starting from a state s
in an attractor, we can enumerate this attractor by listing all
states reachable from s. We can compactly represent FRA({s})
as a BDD [12] or a finite complete prefix [27]. Note that F
also contains the set of fixed points of G (say Ffix) and Ffix

can be easily calculated by using BDD. Specifically, Ffix can
be represented as a BDD characterized by

∧n
i=1(xi ↔ fi(x)).

Thus, we can remove Ffix from F before filtering the set F .
The description of our method is shown in Algorithm 2. Note

that, the result of Algorithm 2 is a set of states where each state
represents (i.e., belongs to) an attractor of the ARBN. Let see an
example as follows. Consider the ARBN of the BN in Example
1. The STG G of this ARBN is given as in Figure 2b. Choose
U = {x1, x2}, b1 = 0, b2 = 1. The reduced STG G′ is given
as in Figure 4b. Then, F = {000, 010, 111} and Ffix = {000}.
After finishing Line 8, we have F = {010, 111} and A = {000}.
Suppose that s = 010 in the first iteration of the while loop.
Since 010 reaches 000 in the STG G, 010 is not added to A. In
the next iteration, s = 111, and it is added to A since 111 does
not reach any state in A ∪ F = {000}. Finally, A = {000, 111}
where 000 represents the attractor {000} and 111 represents the
attractor {111, 101}.

Algorithm 2 Algorithm for finding all attractors of an ARBN

Input: An ARBN A
Output: The set A of all attractors of A

1: Find an FVS U = {xi1 , ..., xik} of A
2: Choose a set B = {bi1 , ..., bik} of retained values corre-

sponding to the nodes of U
3: Let G be the STG of A
4: Let G′ be the STG obtained by removing all arcs (x, x′)

from G where
∨k

j=1(xij ↔ bij ∧ x′ij ↔ 1− bij ) holds
5: F ← the set of fixed points of G′

6: Ffix ← the set of fixed points of G
7: F ← F\Ffix

8: A← Ffix

9: while F 6= ∅ do
10: Remove a state s from F
11: if s does not reach in G any state in A ∪ F then
12: A← A ∪ {s}
13: end if
14: end while
15: return A

Theorem 3. Algorithm 2 finds exactly all attractors of an ARBN.
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Proof: By Theorem 1, G′ has no cycles. That means F is the
set of all attractors of G′.

After finishing Line 8, each attractor of G contains at least
one state in A∪F by Theorem 2 (1). Through the while loop, the
property (1) is preserved. Indeed, in each iteration, if s reaches
a state s′ in A ∪ F and s is in an attractor att of G, then s′ is
also in att by the definition of an attractor.

After finishing the while loop, each attractor of G contains at
least one state in A (a) since F = ∅. We show that A has no
two states s and s′ such that s and s′ are in the same attractor
of G (b). Indeed, if s and s′ is in the same attractor of G, then
s (s′) reaches s′ (s). If s is traversed before s′, then s can not be
added to A. If s′ is traversed before s, then s′ can not be added
to A. Moreover, there is no state s in A such that s is not in
any attractors (c). Indeed, if such a state s exists, it must reach
at least an attractor, implying that it reaches A ∪ F . Hence, s
can not be added to A. This is a contradiction.

From (a), (b), and (c), we have that A one-to-one corresponds
to the set of attractors of G. Therefore, Algorithm 2 finds exactly
all attractors of the ARBN.

In the following subsections, we will present the steps of
Algorithm 2 in detail. For each step, we formalize and analyze
the problems related to it. Then, we propose methods to
efficiently solve these problems.

4.2 Finding fixed points of the reduced STG

First, we consider the problem of calculating the set of fixed
points of the reduced STG G′.
Problem 1:
Instance: An ARBN A = (V A, FA), an FVS U of A, a retained
set B.
Question: How can we efficiently find the set of fixed points
of the reduced STG G′ as described in the previous sections?

In an ARBN, a state s in G will become a fixed point in G′

if and only if the updating of the node xi does not change
si for all xi ∈ V A\U and the updating of the node xi does
not change si or changes si from bi to 1 − bi for all xi ∈ U .
Obviously, the set F of fixed points of G′ can be characterized
by a propositional formula. For example, let consider the ARBN
of the BN in Example 1. Choose U = {x1, x2}. Then, F can be
characterized by the following formula:

Fchar = ((x′1 ↔ x1) ∨ (x1 ↔ b1 ∧ x′1 ↔ 1− b1))

∧ ((x′2 ↔ x2) ∨ (x2 ↔ b2 ∧ x′2 ↔ 1− b2))

∧ (x′3 ↔ x3)

∧ (x′1 ↔ x2 ∨ x3) ∧ (x′2 ↔ x1 ∧ ¬x2) ∧ (x′3 ↔ x1)

where x and x′ denote the current state and the next state,
respectively. Clearly, x′1, x

′
2, x
′
3 can be eliminated from Fchar .

We obtain a new formula of Fchar whose variables are only
x1, x2, x3. We have Fchar = ((x2 ∨ x3 ↔ x1)∨ (x1 ↔ b1 ∧ (x2 ∨
x3 ↔ 1 − b1))) ∧ ((x1 ∧ ¬x2 ↔ x2) ∨ (x2 ↔ b2 ∧ (x1 ∧ ¬x2 ↔
1− b2))) ∧ (x1 ↔ x3).

We can generalize the formula Fchar as Fchar =∧
xi∈U ((fi(x) ↔ xi) ∨ (xi ↔ bi ∧ fi(x) ↔ 1 − bi)) ∧∧
xi 6∈U (fi(x) ↔ xi). Since U is an FVS, the value of xi 6∈ U is

uniquely determined from the values of the nodes of U . That
means we can obtain a formula which is equivalent to Fchar

and contains only the variables of the nodes of U . Thus, we
can claim that |F | (the number of fixed points of G′) is at most
2|U|. In real biological networks, the size of the minimum FVS
is often much smaller than n. Hence, |F | may be much smaller

than the number of possible states of the ARBN (2n) if we use
the minimum FVS as U . Note that 2|U| is only an upper bound
of |F |, and |F | depends on both U and B. Thus, having the
minimum FVS may not ensure having the smallest |F | (see
Example 2).

Example 2. Consider the BN in Example 1. The interaction
graph of this BN has three FVSs including {x1, x2}, {x2, x3},
and {x1, x2, x3}. Herein, {x1, x2} and {x2, x3} two minimum
FVSs. If we choose U = {x1, x2}, b1 = 0, b2 = 1, then |F | =
|{000, 010, 111}| = 3. If we choose U = {x1, x2, x3}, b1 = 0, b2 =
0, b3 = 0, then |F | = |{000, 101}| = 2.

The authors of [19] use an enumeration-based approach
which exhausts all 2|U| possible values of the nodes of U .
However, since Fchar is a propositional formula, we can use
some techniques, such as, BDD or SAT (All-SAT). BDD is often
inefficient for large networks. In this paper, we therefore use
BDD and All-SAT to calculate F for networks with n ≤ 60 and
n > 60, respectively.

Obviously, |F | depends on the value of the set B. Con-
sider the ARBN of the BN in Example 1. If we choose U =
{x1, x2}, b1 = 0, b2 = 0, then |F | = |{000, 101}| = 2 (see
Figure 4a). If we choose U = {x1, x2}, b1 = 0, b2 = 1, then
|F | = |{000, 010, 111}| = 3 (see Figure 4b). We expect that |F | is
as small as possible since the number of iterations of Algorithm
2 is equal to |F | − |Ffix| and |Ffix| is fixed with respect to the
ARBN. In next, we consider the problem of efficiently choosing
the set B to obtain this expectation.
Problem 2:
Instance: An ARBN A = (V A, FA), an FVS U of A, a retained
set B.
Question: Find a value for the retained set B such that the set
of fixed points of the reduced STG G′ is minimum.

Let F denote the set of fixed points of the reduced STG G′.
Then, F can be represented as a propositional formula Fchar

of n Boolean variables x1, ..., xn and m Boolean parameters
bi1 , ..., bim where 0 ≤ m ≤ n. Problem 2 aims to find an as-
signment b∗i1 , ..., b

∗
im to bi1 , ..., bim such that the number satisfy-

ing assignments of Fchar(bi1/b
∗
i1 , ..., bim/b∗im) to x1, ..., xn (the

number of fixed points) is minimum. For example, consider the
ARBN of the BN in Example 1. Choose U = {x1, x2}. Then, F
can be characterized by the following formula:

Fchar = (((x2 ∨ x3)↔ x1) ∨ (x1 ↔ b1 ∧ (x2 ∨ x3)↔ 1− b1))

∧ (((x1 ∧ ¬x2)↔ x2) ∨ (x2 ↔ b2 ∧ (x1 ∧ ¬x2)↔ 1− b2))

∧ (x1 ↔ x3).

If (b∗1, b
∗
2) = (0, 0), then the number of satisfying assignments

of Fchar(b1/b
∗
1, b2/b

∗
2) is 2, i.e., |F | = 2 (see Figure 4a).

If (b∗1, b
∗
2) = (0, 1), then the number of satisfying assignments

of Fchar(b1/b
∗
1, b2/b

∗
2) is 3, i.e., |F | = 3 (see Figure 4b).

This problem is related to the problem of counting the num-
ber of satisfying assignments of a propositional formula which
is known as a #P-complete problem. Let P denote Problem
2. Here, we consider the constructive version of P (i.e., the
output of P includes the optimal assignment to bi1 , ..., bim and
the minimum number of satisfying assignments to x1, ..., xn). P
seems to be an optimization problem whose measure function
is a #P function, thus it seems to be in Opt#P [29]. The proof
would be very technical and long. However, we can see that it
is too hard to solve P . In this paper, we use a heuristic method
to solve it.

Let see the characterized formula Fchar of F . Intuitively, we
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need to assign the most evaluation of fik (k ∈ {1, ...,m}) to
bik . a ∈ {0, 1} is the most evaluation of a function f if the
number of satisfying assignments on f ’s inputs of f ↔ a is
greater than or equal to the number of satisfying assignments
on f ’s inputs of f ↔ 1 − a. Assigning the most evaluation
of fik to bik makes the number of assignments to x1, ..., xn of
(xik ↔ bik ∧ fik (x)↔ 1− bik ) decreased. Since the number of
assignments to x1, ..., xn of xik ↔ fik (x) does not depend on
bik , this rule can reduce the number of assignments to x1, ..., xn

of (xik ↔ fik (x)∧(xik ↔ bik ∧fik (x)↔ 1−bik )). For example,
the most evaluation of f1 = x2 ∨ x3 is 1 (from the truth table,
1 (75%) and 0 (25%)), thus we assign 1 to b1. Similarly, b2 is
assigned to 0. Now, |F | is 2. The number of attractors of the
ARBN is 2, we thus obtain the optimal value of |F | since the
number of attractor of the ARBN is a lower bound of |F | by
Theorem 2. Note that this idea follows a greedy manner, thus
the optimality of the solution is not guaranteed (see Example
3).

Example 3. Consider a BN of three nodes (x1, x2, and x3). Its
Boolean functions are given by: f1 = (¬x1 ∨¬x3)∧x2, f2 = ¬x1 ∨
¬x2, f3 = ¬x2. Figures 5a and 5b denote the interaction graph and
the STG of the ARBN counterpart of this BN, respectively. Choose
U = {x1, x2}. By the heuristic presented in the previous paragraph,
we have b1 = 0, b2 = 1 and |F | = |{010, 110}| = 2. However, if we
choose b1 = 1, b2 = 1, we will obtain |F | = |{110}| = 1.

x1

x2 x3

(a)

000 010

001

110

011 111

101 100

(b)

Fig. 5: An example BN. Its interaction graph (a) and STG of its
ARBN counterpart (b).

There is a small problem: How to efficiently calculate the
most evaluation of fik? Constructing a truth table of fik is a
direct and simple way. However, when fik has many input
nodes, this way is inefficient. Since fik can be encoded as a
BDD, we can use the SATCount function in BDD. The time
complexity of SATCount is O(|IN(fik )|) [30]. Specifically, we
here propose an algorithm for finding an assignment to B.
Algorithm 3 shows our algorithm. SATCount(fi) returns the
number of satisfying assignments of fi. ctrue and cfalse denote
the numbers of assignments in which the values of fi are 1
and 0, respectively. In the for loop, when ctrue = cfalse, we
randomly assign either 1 or 0 to bi.

4.3 Preprocessing

Obviously, the number of iterations of Algorithm 2 is equal to
|F |. Note that all fixed points of the ARBN have been excluded
from F (see Line 7 of Algorithm 2). Thus, we here propose
a preprocessing which aims at shrinking the set F . We name
this preprocessing as Preprocessing SSF (Shrinking the Set F).
In each iteration of Preprocessing SSF, we choose randomly a

Algorithm 3 Algorithm for finding an assignment to B

Input: B = {bi1 , ..., bim}
Output: An assignment (b∗i1 , ..., b

∗
im) to bi1 , ..., bim

1: for all i ∈ {i1, ..., im} do
2: ctrue ← SATCount(fi)
3: cfalse ← 2|IN(fi)| − ctrue
4: if ctrue > cfalse then
5: b∗i ← 1
6: else if ctrue < cfalse then
7: b∗i ← 0
8: else
9: b∗i ← randomly either 1 or 0

10: end if
11: end for
12: return (b∗i1 , ..., b

∗
im)

node xi to be updated. Then, F ← F ′ where F ′ is the forward
image set of F by updating node xi, i.e., F ′ =

⋃
s∈F N(s, i)

where N(s, i) returns a state s′ such that (s, s′) is a transition
of the STG of the ARBN and s′i = fi(s). Note that F ′ can
be easily calculated by using BDD (see [13]). The number of
iterations can be empirically obtained. We will discuss this in
more detail in the end of this subsection. Hereafter, we show
that Preprocessing SSF preserves the correctness of Algorithm
2 by three following properties of ARBNs. We omit the proofs
of these properties since they are obvious.

Property 1: Let F ′ be the forward image set of F by updating
node xi. Then, |F ′| ≤ |F |. Moreover, two states of F may have
the same next state by updating node xi. In this case, we have
|F ′| < |F |.

Property 2: If s is in an attractor of the ARBN, then s′ is also
in this attractor where s→∗ s′.

Property 3: If s is a state of the ARBN, then FR({s′}) ⊆
FR({s}) where s → s′ and FR({s}) is the set of states
reachable from {s}.

Property 1 guarantees that the cardinilaty of F does not
increase through these iterations even may decrease. Property
2 guarantees that all cyclic attractors of the ARBN still appear
in the set F , thus all attractors of the ARBN still appear in
A ∪ F . Property 3 justifies the usefulness of Preprocessing SSF
for the next steps since the forward reachable set of each state
in F may be shrunk. Note that after finishing the iterations, F
may contain some fixed points of the ARBN. Thus, we need
to again exclude the fixed points of the ARBN, i.e., to again
perform Line 7 of Algorithm 2. Now, all attractors of the ARBN
still appear in A ∪ F .

To illustrate Preprocessing SSF, we continue with the ARBN
of the BN in Example 1. Assume that U = {x1, x2}, b1 =
0, b2 = 1. Then, F = {000, 010, 111} (see Figure 4b). After
finishing Lines 7 and 8 of Algorithm 2, we have F = {010, 111}
and A = {000}. Assume that the number of iterations of
Preprocessing SSF is 2. Let I = 〈xi1 , xi2〉 denote the sequence
of the updated nodes. If I = 〈x1, x2〉, then F = {010, 111} →
F = {110, 111} → F = {110, 101} (see Figure 2b). Obvi-
ously, the cardinilaty of F does not increase and all attractors
({000} and {101, 111}) still appear in A ∪ F through these
iterations. We have FR({110}) = {110, 100, 000, 101, 111} and
FR({010}) = {010, 110, 100, 000, 101, 111}. Property 3 holds
since FR({110}) ⊆ FR({010}). If we choose I = 〈x1, x3〉, then
F = {010, 111} → F = {110, 111} → F = {111} (see Figure
2b). In this case, the cardinilaty of F even decreases. Moreover,
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if we choose I = 〈x2, x3〉, then F = {010, 111} → F =
{000, 111} → F = {000, 111} (see Figure 2b). The cardinilaty
of F is unchanged. However, after excluding the fixed points
again, we have F = {111}, i.e., the cardinilaty of F decreases.

Finally, we discuss how to set the number of iterations of
Preprocessing SSF (say Imax). Obviously, we expect that Imax

is good enough, i.e., Imax is not too large and the cardinilaty
of F after Preprocessing SSF is small enough. Preprocessing
SSF is optimal when the cardinilaty of F after Preprocess-
ing SSF is equal to the number of cyclic attractors. We set
Imax based on the following intuitions. First, if n increases
(decreases) then Imax should increase (decrease). Second, if
|F | increases (decreases) then Imax should increase (decrease).
Third, if Ffix increases (decreases) then Imax should decreases
(increases). Last, Imax however should not exceed a threshold.
Combining with running some sample networks, we set Imax

as Imax = min(2×n1.5×|F |/(1+|Ffix|), 5000). We use 1+|Ffix|
to deal with the case |Ffix| = 0.

4.4 Reachability analysis

Reachability is a central problem in systems science. It is also
the key task in our method. In theory, the reachability in
ARBNs is very difficult. Indeed, the PSPACE-completeness of
the reachablity in ARBNs has been proved in [31]. However,
in practice, there are various methods for checking the reach-
ability in ARBNs. Since the set of states reachable from the
starting state may be very large, the explicitly depth-first search
and breadth-first search manners are inefficient. We need a
more efficient approach. The use of BDD on a breadth-first
search-based method is a better solution. However, it still
meets the inherent problems of BDD [32] (e.g., extremely long
computational time, out of memory). A SAT-based bounded
model checking [32] is an efficient approach. However, it is
incomplete unless we use a completeness threshold which is
usually very hard to compute even for the case of CRBNs [14].
Note that ARBNs have high concurrency [31]. Thus, we can
use an unfolding-based approach which is known to be an
efficient approach exploiting the concurrency of systems [33].
Recently, some efficient approximation methods (e.g., Pint [34],
ASPReach [35]) have been proposed for checking reachability
in ARBNs. The authors report that these methods can handle
large-scale networks. However, they are of course incomplete.
Moreover, in their experiments, the start and target only cover
a small set of nodes. In this paper, we aim at proposing
an exact and efficient method for finding ARBN attractors.
Therefore, we focus on unfolding-based methods for checking
the reachability in ARBNs. Considering these approximation
methods to apply in our method is one of our future work.

The method for encoding an ARBN as a 1-safe PN has
been proposed [27]. Thus, we can apply the algorithms [33]
for checking the reachability in 1-safe PNs to that in ARBNs.
Hereafter, we show how Line 11 of Algorithm 2 is performed.
Obviously, we can perform it by calling UnfReach(A, s, A∪F ).
The description of the function UnfReach is shown in Al-
gorithm 4. However, there are two problems needed to be
considered. First, in the case the reachability holds, we do not
need to build the whole finite complete prefix PU . Second, MF

is a set of markings. It is too waste when calling Mole |MF |
times since the standard function of Mole is to check whether
a given 1-safe PN reaches a desirable marking.

To deal with these problems, we here propose a new method
(called OnTheF lyMole) based on an on-the-fly manner. Note

that the authors of [27] have also used Petri net unfoldings
for the reachability analysis of ARBNs. However, they have
not shown in detail their method. Our method may be similar
to the method by [27]. We first add new transitions to P .
A new transition corresponds to a marking in MF . For each
transition tm(m ∈ MF ), we add new arcs from all places in
m to tm. This means that when reaching the marking m, tm
is enabled. Then, in the process of building the finite complete
prefix PU , whenever at least one new transition is enabled (i.e.,
this transition will appear in PU ) we terminate the process
and return true (i.e., reachable). When finishing the process,
we return false (i.e., unreachable). Mole also supports an on-
the-fly manner. However, it only deals with the case of one
transition. Therefore, we have adjusted a little the source code
of Mole to implement our method.

Back to the UnfReach function, its special case is when F = ∅.
For this case, we simply return false (i.e., unreachable). When
F 6= ∅, we set the corresponding marking of s in P (denoted
by [[s]]P ) as the initial marking of P and then simply call
OnTheF lyMole(P,MF ) where MF is the set of markings
corresponding to the states in F .

Algorithm 4 UnfReach

Input: An ARBN A, a state s, a set F of states
Output: Whether s reaches F on the STG of A?

1: F ← PreprocessingBCN(s, F )
2: if F = ∅ then
3: return false
4: else
5: P ← the encoded 1-safe PN of A
6: M0 ← [[s]]P
7: Set M0 as the initial marking of P
8: MF ← {[[x]]P |x ∈ F}
9: return OnTheF lyMole(P,MF )

10: end if

The size of a built prefix of the encoded 1-safe PN may
be very large. In this case, the computation of finite prefixes
may be intractable. To mitigate this issue, we first use a
preprocessing step in the UnfReach function. This preprocessing
aims at solving the reachability in an ARBN without building
its prefixes or at least reducing the number of target states (i.e.,
the states of F ). The optimal case is when F = ∅ implying
that s does not reach F in the STG of A. Hereafter, we only
show the description of this preprocessing, its usefulness will
be discussed in Subsection 5.1.

We first define some types of nodes in a BN as follows. A
node xi, i ∈ {1, ..., n} is called a zero-constant or one-constant
node if fi ∧ ¬xi = 0 or fi ∨ ¬xi = 1, respectively. In the
biological context, a constant node will retain its value once
it is set to a specific value (0 or 1). For example, if fi = 0 or
fi = xi∧ ..., then xi is called a zero-constant node. In the other
hand, if fi = 1 or fi = xi ∨ ..., then xi is called a one-constant
node. The preprocessing is based on the properties of zero-
constant and one-constant nodes. We name this preprocessing
as Preprocessing BCN (Based on Constant Nodes). Let V 0 and
V 1 be the sets of zero-constant nodes and one-constant nodes
of A, respectively. For each node xi ∈ V 0, if si = 0 we can
remove from F the state s′ such that s′i = 1. For each node
xi ∈ V 1, if si = 1 we can remove from F the state s′ such that
s′i = 0. Now, we obtain a new set F ′ satisfying s reaches F in
the STG of A if and only if s reaches F ′ in the STG of A.
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5 EXPERIMENTS

We have implemented the proposed method for finding ARBN
attractors in a JAVA tool called FVS-ARBN. FVS-ARBN uses
the JDD library [36] for BDD manipulation and Z3 [37] as the
SAT solver. An executable file of FVS-ARBN and some exam-
ples of real biological networks are available at: https://sites.
google.com/site/trinhgiangjaist/. To evaluate the efficiency of
Preprocessing SSF, we conduct experiments to compare the
performance of two variants of our method. The first variant
(say M1) does not use Preprocessing SSF while the second
variant (say M2) uses Preprocessing SSF. We also compare
the performance among M1, M2, genYsis [13], and CABEAN
[20]. We choose genYsis and CABEAN since they are exact and
famous tools for finding attractors of ARBNs.

All the experiments were run on a virtual machine whose
environment is CPU: Intel(R) Xeon(R) Silver 4116 4x2.10GHz,
Memory: 24 GB, CentOS 7 64 bit. We used two sets of Boolean
networks. The first set includes BN models of real biological
networks gotten from the literature. The second set includes
random BNs generated with Bool Net R package [38]. Note that
FVS-ARBN uses BDD in Preprocessing SSF and both genYsis
and CABEAN are BDD-based methods. Since high memory
consuming is an inherent problem of BDD, memory needs to
be considered. In our experiments, we set the heap size to
16 GB. With this heap size, all these algorithms never met
the OutOfMemory error before exceeding the time limit in all
networks.

5.1 Results on real biological networks

We applied these algorithms to BNs of 32 real biological
networks whose sizes range from 19 to 101. A BN can have
some input nodes xi which do not change their values through
the evolution of the BN (i.e., fi = xi). We here consider the
networks where the value of an input node is not fixed to either
0 or 1. CABEAN requires to use a network reduction technique
which removes all the leaf nodes [11] of a BN. This reduction
technique conserves the attractors of ARBNs [39]. To ensure
the fairness of the experiments, we also used this reduction
technique for both FVS-ARBN and genYsis. Lastly, the time
limit for each network was set to 10 hours since the running
time may be very long for large-scale networks.

The results are shown in Table 1. Columns 1, 2, 3, and 4
denote the name of the network, the number of nodes (n),
the size of the FVS (|U |), and the number of attractors (|A|),
respectively. Column ”|F |” denotes the size of the filtering set
F before using Preprocessing SSF while Column ”|F1|” denotes
that after using Preprocessing SSF. Column ”time” denotes the
running time in seconds, respectively. ”-” stands for the case of
not obtaining the result within the time limit. We observed that
in some BNs, CABEAN terminated before exceeding the time
limit and the Segmentation fault error was printed. We guess
that in the computation of attractors CABEAN will terminate
when meeting a criterion (e.g., the size of the computed attrac-
tor exceeds a threshold). Anyway, CABEAN did not finish the
computation of attractors in this case. For these BNs, we report
the time when CABEAN terminated and use ”*” to indicate the
case. From these results, we obtain some remarks as follows.

First, the size of the FVS obtained by Algorithm 1 is
much smaller than the network size in all the networks
(especially in, e.g., the HGF Signaling in Keratinocytes
network, the PC12CellDifferentiation network, the
T Cell Receptor Signaling network). This confirms that

Algorithm 1 is good enough for finding a minimum or near
minimum FVS.

Second, |F1| is smaller than |F | in 29/32 networks. Moreover,
M2 outperforms M1 in most networks, especially in, e.g., the
FA BRCA pathway network, the Bcell network, the MAPK
network. Note that in some networks (e.g., the Differentia-
tion of T lymphocyte network, the YeastApoptosis network,
the IL 6 Signalling network), M2 is much slower than M1.
This is apparent since we must take time for Preprocessing
SSF. However, the difference between running time ofM2 and
M1 is insignificant or the running time ofM2 is reasonable (<
11 mins) in these networks. These observations are evidence
for the usefulness of Preprocessing SSF.

Third, M2 outperforms genYsis in most networks. In 8/32
networks, genYsis failed to obtain the result within the time
limit while M2 succeeded. In 1/32 networks (the YeastApop-
tosis network),M2 is slower than genYsis. However, the differ-
ence between running time ofM2 and genYsis is insignificant.
In most of 23/32 remaining networks, M2 is much faster
than genYsis. Especially, the difference between running time
of M2 and genYsis is very large in some of these networks,
e.g., the Bcell network (22.59 and 8702.80), the HumanMyelo-
maCells network (47.00 and 12983.39), the TcellLGL network
(55.56 and 21198.63). Moreover, M1 even outperforms genYsis
in some networks (e.g., the Colitis associated colon cancer
network, the Differentiation of T lymphocytes network, the
IL 6 Signalling network). These observations show the effec-
tiveness of the FVS-based method as compared to genYsis.

Fourth, M2 also outperforms CABEAN in most networks.
In 10/32 networks, CABEAN failed to finish the computa-
tion of attractors while M2 succeeded within the time limit.
Even the running time of CABEAN before terminating is
greater (e.g., the T Cell Receptor Signaling network) or much
greater (e.g., the InflammatoryBowelDisease network, the TL-
GLSurvival network, the Colitis associated colon cancer net-
work) than the running time of M2. In 9/32 networks, M2

is slower than CABEAN. However, the difference between
running time of M2 and genYsis is insignificant (e.g., the
AuroraKinaseA network, the GuardCellAbscisicAcidSignaling
network) or the running time of M2 is reasonable (e.g., the
Differentiation of T lymphocytes network, the YeastApopto-
sis network). In most of 13/32 remaining networks, M2 is
much faster than CABEAN. Especially, the difference between
running time of M2 and CABEAN is very large in some
of these networks, e.g., the TcellLGL network (55.56 and
916.23), the Drosophila network (4.88 and 1984.40). More-
over, M1 even outperforms CABEAN in some networks (e.g.,
the Colitis associated colon cancer network, the Differentia-
tion of T lymphocytes network, the IL 6 Signalling network,
the T Cell Receptor Signaling network). These observations
show the effectiveness of the FVS-based method as compared
to CABEAN.

Last, M1 and M2 even can handle large networks in terms
of attractor detection in ARBNs without using any network
reduction technique. We here report the running time of M1

and M2 for some large networks without using any network
reduction technique. For the IL 6 Signalling network (n = 86),
the running time of M1 and M2 are 1323.38 seconds and
368.56 seconds, respectively. For the T Cell Receptor Signaling
network (n = 101), the running time of M1 and M2 are
583.71 seconds and 1463.30 seconds, respectively. Note that
genYsis failed to obtain the result within the time limit in all
the two networks. The analysis for these networks was usually

https://sites.google.com/site/trinhgiangjaist/
https://sites.google.com/site/trinhgiangjaist/
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performed by using their reduced versions (e.g., removed leaf
nodes or fixed input nodes) because of the performance limita-
tions of the existing tools. Therefore, the advanced computation
capability of our method can enable biologists to conduct more
accurate analysis on large networks.

In this end of this subsection, we will discuss the usefulness
of Preprocessing BCN presented in Subsection 4.4 as well as
the impact of the picked FVS to the performance of our method
(i.e., M2).

By applyingM2 without using Preprocessing BCN on some
real networks of the benchmark, we observed that Prepro-
cessing BCN can accelerate the running time of our method.
In the remy tumorigenesis network, the speedup by using
Preprocessing BCN is 9.13/3.35 = 2.73. Especially, in the
IL 6 Signalling and T Cell Receptor Signaling networks, M2

without using Preprocessing BCN did not find all the attractors
within 10 hours while M2 with using Preprocessing BCN
found all the attractors in 297.51 seconds and 5.27 seconds,
respectively (see Table 1).

By applying M2 with randomly choosing an FVS on some
real networks of the benchmark, we observed that the picked
FVS may largely impact the performance of our method. In the
IL 6 Signalling network, we obtained the result as |U | = 25
and the running time is 3337.85 seconds. The result by using
Algorithm 1 for choosing an FVS is |U | = 21 and the running
time is 297.51 seconds (see Table 1). Especially, in the Butanol-
Production network, we obtained the result as |U | = 30 and
M2 did not find all attractors within 10 hours while the result
by using Algorithm 1 for choosing an FVS is |U | = 18 and the
running time is 324.22 seconds (see Table 1). We have shown in
Subsection 4.2 that having the minimum FVS may not ensure
having the best performance. However, using a minimum or
nearly minimum FVS is still a good strategy to obtain good
performance at least in our benchmarks.

5.2 Results on randomly generated networks

We randomly generated a set of N -K BNs [5] with network size
n in the set {50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110}
and K = 2 (i.e., each node has exactly K = 2 input nodes).
For each network size, 20 instances were generated. In total,
we have 260 random BNs.

We then applied M2, genYsis, and CABEAN to the 260
random BNs and recorded the number of failures (i.e., failed
to obtain the result within 30 minutes). Since the usefulness of
Preprocessing SSF has been justified in the previous subsection,
we did not applyM1 to these BNs. Note that we also used the
network reduction technique as in Subsection 5.1. The results
are shown in Figure 6. As we can see, the number of failures
of genYsis or CABEAN rapidly approaches 20. On the other
hand, M2 can even handle 30 or 55 percent of networks for
n = 105 or n = 110, respectively. Moreover, in each network
size, the number of failures of genYsis or CABEAN is always
larger than the number of failures of M2. These observations
show thatM2 is more scalable than both genYsis and CABEAN
in terms of N -K BNs.

For n = 110, M2 failed to obtain the result within 30
minutes in 45 percent of networks. Note that these BNs have
been reduced by using the network reduction technique based
on leaf nodes. In the biological context, 110-node networks
are not very large since a comprehensive analysis of gene
regulatory networks often requires formal models including
hundreds or even thousands of elements [20]. Thus, M2 (as

also other existing methods) is generally incapable of handling
very large BNs (e.g., 500-node or 1000-node BNs). Improving
M2 to handle such BNs is one of our future work.
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Fig. 6: The results on randomly generated networks.

6 DISCUSSION AND FUTURE WORK

We have presented and formally proved the relations between
FVSs and dynamics of BNs. From these relations, we proposed
an FVS-based method for detecting attractors in ARBNs. Our
approach relies on the principle of removing arcs in the STG
to get a candidate set and the reachability property to filter
the candidate set. The obtained set one-to-one corresponds to
the set of all attractors of the ARBN. The correctness of our
method has been formally proved. We have also proposed
Preprocessing SSF to reduce the computational burden while
preserving the correctness of our method. Then, we have pro-
posed an unfolding-based and on-the-fly method for checking
reachability property. In principle, our method works well on
large networks having relatively small FVSs and not too large
attractors. Fortunately, these characteristics are often found in
real biological networks [3], [19].

We have implemented our method and conducted experi-
ments on real biological networks and randomly generated N -
K networks. The obtained results confirm the usefulness of
Preprocessing SSF and are very promising since our method
can handle large networks whose sizes are up to 101 without
using any network reduction technique. The experimental re-
sults also show the effectiveness of our method as compared
to the two existing methods, genYsis and CABEAN. Note that
the main advantage of our method is to reduce the attractor
detection in ARBNs to the reachability problem. This opens a
chance to efficiently solve the attractor detection in ARBNs by
applying the advents in reachability research which can handle
very large asynchronous networks [34].

There are some possible ways to improve our method. The
first is to reduce the number of fixed points of the reduced
STG. We can use an exact method for finding minimum FVSs
or a more efficient heuristic for setting the retained set B. The
second is to propose an efficient heuristic for variable ordering
since Preprocessing SSF uses BDD. A good variable ordering
can reduce significantly the time of Preprocessing SSF. Last is
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TABLE 1: Results on real biological networks.

M1 M2 genYsis CABEAN
name n |U | |A| |F | time |F | |F1| time time time

OxidativeStressPathway [40] 19 4 2 4 0.71 4 1 0.20 1.4 0.73
AuroraKinaseA [40] 23 8 32 32 0.61 32 16 0.73 2.75 0.49

dahlhaus neuroplastoma [41] 23 8 32 32 0.64 32 16 0.65 2.73 0.54
FA BRCA pathway [40] 28 11 1 13 - 13 2 0.73 10.02 4.19

Septation Initiation Network [40] 31 10 640 320 1.43 320 0 1.12 51.92 1.22
TumourCell [40] 32 13 9 117 1.75 117 0 0.60 2.33 0.51

Bordetella bronchiseptica [40] 33 9 3 18 61.85 18 0 0.55 2.03 1.73
Lymphoid myeloid cell specification [40] 33 8 21 35 1.75 35 0 0.59 21.69 3.51

CholesterolRegulatoryPathway [40] 34 3 4 2 0.44 2 0 0.25 4.85 0.49
remy tumorigenesis [42] 35 16 25 892 72.08 892 5 3.35 15.91 2.49*

TCellSignaling [40] 40 6 8 5 0.46 5 1 0.16 0.22 0.04
ApoptosisNetwork [40] 41 7 8 8 6.08 12 8 7.27 581.07 6.62*

Treatment of Castration Resistant [40] 42 14 16384 0 0.49 0 0 0.13 18.18 0.73
GuardCellAbscisicAcidSignaling [40] 44 8 28 20 0.61 32 15 1.33 7.90 0.83

InflammatoryBowelDisease [40] 47 22 1 960 - 960 1 2.47 - 12.77*
Stomatal Opening Model [40] 49 13 48 390 9.48 243 14 10.99 31.22 2.38

Differentiation of T lymphocytes [40] 50 18 2050 5581 80.37 5581 0 627.76 - 89.75
Senescence [40] 51 12 17 84 13.69 84 2 9.93 18.05 3.00
Drosophila [43] 52 14 128 84 1.46 84 0 4.88 - 1984.40

MAPK [40] 53 10 18 102 - 226 6 8.15 - 5.54*
B bronchiseptica T retortaeformis [40] 53 15 30 298 7794.31 298 0 15.61 3556.85 440.16

TcellLGL [40] 60 23 142 11156 - 11156 108 55.56 21198.63 916.23
TLGLSurvival [40] 61 25 318 18276 - 18276 260 174.66 - 1479.23*

PC12CellDifferentiation [40] 62 3 3 0 0.39 0 0 0.20 5.01 0.59
ButanolProduction [40] 66 18 8192 12416 - 12416 6144 324.22 - 24.80*

HumanMyelomaCells [40] 67 14 83 558 1305.75 558 0 47.00 12983.39 0.02*
HGF Signaling in Keratinocytes [40] 68 10 72 256 5.3 256 0 3.79 1200.04 8.75
Colitis associated colon cancer [40] 70 13 10 84 516.06 100 14 391.05 - 12614.96*

Bcell [44] 72 19 72 934 12912.62 934 69 22.59 8702.80 29.84
YeastApoptosis [40] 73 17 8448 4352 3.08 4352 4352 75.32 45.85 1.16
IL 6 Signalling [40] 86 21 32768 20480 104.14 20480 4096 297.51 - 11.71*

T Cell Receptor Signaling [40] 101 10 128 72 2.89 72 24 5.27 3596.65 6.35*

to use a more efficient method for checking the reachability
in ARBNs. We can consider some other techniques in terms of
Petri net unfoldings, such as, contextual Petri nets [45], merged
processes [46]. Moreover, we can also use some static analyzers
(e.g., Pint [34], ASPReach [35]) in a preprocessing step.

Our method uses Mole and some other tools as subroutines.
Since the computational complexities of such tools are unclear,
it is difficult to analyze the computational complexity of the
whole algorithm. We leave the analysis of theoretical and/or
practical computational complexity as future work. Moreover,
random order asynchronous Boolean networks (ROABNs) [18]
are also a popular type of asynchronous BNs and still get much
attention from research communities [4], [47]. Therefore, it is
worthy to study attractors of ROABNs. In the future, we intend
to extend our method for ARBNs to that for ROABNs. It is
potentially possible since the relations presented in this paper
still hold for ROABNs.
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