
Trap spaces of multi-valued networks: Definition,
computation, and applications (Supplementary

Material)

Abstract. This supplementary material expands on the contents of the
main paper. The structure of the supplement roughly follows the struc-
ture of the main paper, giving additional technical details wherever ap-
plicable. Note that some notation has been updated compared to the
main paper. This is mainly to ease readability and reduce ambiguity in
the absence of a strict page limit. Additionally, we include multiple il-
lustrative examples which also could not be included in the main paper
due to space restrictions.

1 Introduction

Boolean networks are simple but efficient mathematical formalism for modeling,
analyzing, and controlling complex biological systems [49,45]. Beyond systems
biology, they have been widely applied to various areas from science to engi-
neering [58,49]. Boolean network models of biological systems represent genes
as nodes that can take Boolean values: 1 (active) and 0 (inactive). However,
having only two levels of activation is sometimes not always enough to fully
capture the dynamics of real-world biological systems [47,38]. There are many
examples [22,15,38,4] from the literature where the dynamics of the system can
only be modeled by considering more than two activation levels. One classic ex-
ample is the lac operon regulatory system [34] whose key attractors cannot be
characterized using a Boolean encoding. Some others are multi-state models [53],
strictly ternary models [11], and models employing a combination of Boolean and
ternary variables [43]. Hence, there is a crucial need of multi-valued networks
that are a generalization of Boolean networks [47,40].

Despite the importance of multi-valued networks for modeling biological sys-
tems, only limited progress has been made on developing theories, analysis meth-
ods, and tools that can support them [38]. First, besides simulation, the analysis
of logical models is mostly based on attractor computation, since those corre-
spond roughly to observable biological phenotypes [49]. The recent use of trap
spaces in Boolean networks [29] made a real breakthrough in the field of systems
biology as minimal trap spaces provide very good approximations for attrac-
tors and it is much easier to compute them. However, there has been no similar
concept defined and studied for multi-valued networks to date. Second, most
of the existing studies (see, e.g., [47,40,15,17,14]) focus on unitary multi-valued
networks, only very few studies focus on general multi-valued networks (see,
e.g., [44,38]). Third, to the best of our knowledge, very few methods/tools (see,

2

e.g., GINsim [40], BMA [5]) have been developed for multi-valued networks, most
of analysis methods/tools for logical models are designed for Boolean networks
(see, e.g., GINsim [40], PyBoolNet [30], mpbn [42], Trappist [55]). Moreover,
these methods/tools also focus mainly on unitary multi-valued networks. One
notable issue is that the current supporting methods for multi-valued networks
cannot handle large and complex models [40,38]. This issue also prevents the
modellers to build such models [40], which can provide more accurate insights.
Finally, one popular research direction is to convert a multi-valued network to
a Boolean network with the same dynamical behaviour, then we can apply the
rich set of analysis methods/tools designed for Boolean networks. However, the
existing Boolean encoding methods (e.g., the Van Ham Boolean mapping and
their variants [26,15,17,14]) may not cover the full set of dynamics of the origi-
nal multi-valued network on the one hand [17] and the encoded Boolean network
may hinder the efficiency of the Boolean network methods/tools on the other
hand [38]. It is also worth noting that all the above Boolean encoding methods
support only unitary multi-valued networks. We believe that it is possible to
develop direct but efficient methods for multi-valued networks.

In this work we first generalize the concept of trap spaces in Boolean networks
to that in multi-valued networks. Second, we prove several properties of trap
spaces in multi-valued networks including a) the characterization of trap spaces,
b) the separation of minimal trap spaces, and c) the relations with respect to
the Van Ham Boolean mapping. Third, we show the theoretical applications
of trap spaces in the analysis and control of multi-valued networks. Next, we
make a connection between trap spaces of a multi-valued network and siphons
of its Petri net encoding. From this connection, we propose a new method based
on answer set programming [23] for computing different types of trap spaces
of a multi-valued network including generic trap spaces, maximal trap spaces,
minimal trap spaces, and fixed points (special trap spaces). In particular, we
also propose another new method for the case of fixed points, which relies on
the characterization of deadlocks of the Petri net encoding [33]. After showing
the applicability of our methods via a realistic case study, we evaluate their
performance by conducting experiments on real-world models.

Note that all the above results are applicable for both general and unitary
multi-valued networks. Although unitary multi-valued networks have attracted
more attention than general ones (the main reason may be the availability of
Boolean mapping methods for unitary multi-valued networks), the choice be-
tween the unitary and general semantics is still not conclusive and depends on
the timescale assumptions on the modeled variables. In the unitary semantics,
every gradual value change is always “observable” by the system. Nevertheless,
we could imagine a biochemical process where the differences in timescales be-
tween variables [48] lead to a value change that is not visible to the downstream
variables (i.e., it happens too quickly). Indeed, in most cases, the unitary seman-
tics is the “safer” assumption, but by supporting both cases, the modelers can
choose appropriate updating scheme for their case. It is worth noting that there
are some work [51,60] using general multi-valued networks to model and analyze

Trap spaces of multi-valued networks 3

real biological systems with many new insights are obtained. CellNetAnalyzer1,
a famous toolbox for exploring structural and functional properties of metabolic,
signaling, and regulatory networks, supports general rather than unitary multi-
valued networks, although its analysis methods for general multi-valued networks
mainly rely on the explicit construction of the state transition graph. In addi-
tion, any unitary multi-valued network can be equivalent in dynamics to a gen-
eral multi-valued network (see Section 3.2 for the detailed conversion), but the
opposite direction is not true. Hence, the consideration of general multi-valued
networks can provide not only biological but also theoretical benefits.

The remainder of this supplement is structured as follows: Section 2 intro-
duces the basic concepts including Boolean networks, multi-valued networks,
Petri nets and their siphons. Section 3 presents the formal definition, properties,
and theoretical applications of trap spaces in multi-valued networks. Section 4
shows the connection between trap spaces of multi-valued networks and siphons
of their Petri net encoding. It also shows the details of the proposed methods for
trap space computation based on the connection. Section 5 shows a case study
using a realistic model from the literature. Section 6 reports the experimental
results for evaluating the efficiency of the proposed methods. Finally, Section 7
concludes the paper and draws future work.

2 Preliminaries

2.1 Boolean networks

Definition 1. A Boolean Network (BN) is a tuple N = ⟨V, F ⟩ where:

– V = {v1, . . . , vn} is the set of nodes. We use vi to denote both the node vi
and its associated Boolean variable.

– F = {f1, . . . , fn} is the set of update functions. Each function fi is associated
with node vi and satisfies fi : Bn 7→ B where B = {0, 1}.

A Boolean function is locally-monotonic if it can be represented by a formula
in disjunctive normal form in which all occurrences of any given literal are either
negated or non-negated [42]. A Boolean network is said to be locally-monotonic
if all its Boolean functions are locally-monotonic. Otherwise, this model is said
to be non-locally-monotonic.

A state of a Boolean network is a vector v = [v1, . . . , vn] where vi ∈ B
represents the value of node vi. State v ∈ Bn can be seen as a mapping v : V 7→ B
that assigns either 0 (inactive) or 1 (active) to each node. We denote the set of
all possible states of a Boolean network N by SN = Bn.

1 http://www2.mpi-magdeburg.mpg.de/projects/cna/cna.html

4

Update schemes of Boolean networks At each time step t, node vi can
update its state by

vi(t+ 1) = fi(v(t))

where v(t) is the state of N at time t, vi(t + 1) is the state of node vi at time
t+ 1. An update scheme of a Boolean network specifies the way that the nodes
update their states through time evolution [54]. Following the update scheme,
the Boolean network transits from a state to another state (possibly identical).
This transition is called the state transition and denoted by →⊆ SN ×SN . Then
the dynamics of N is captured by the directed graph (SN ,→) called the State
Transition Graph (STG). There are two main types of update schemes [54]:
synchronous, where all the nodes are update simultaneously, and fully asyn-
chronous, where only one node is nondeterministically selected to be updated.
We denote (SN ,⇌) (resp. (SN , ↪→)) the STG of N under the synchronous (resp.
fully asynchronous) update scheme.

Trap sets and trap spaces of Boolean networks A non-empty set T ⊆ SN
is a trap set with respect to → if for every x ∈ T and y ∈ S with x → y it holds
that y ∈ T [29]. An attractor A of N with respect to → can be defined as a
minimal trap set of (SN ,→). That is there is no other trap set such that it is
a proper subset of this attractor. An attractor of size 1 is called a fixed point,
otherwise a cyclic attractor [29].

A sub-space m of a Boolean network N = ⟨V, F ⟩ is a mapping m : V 7→
B ∪ {⋆}. m(vi) ∈ B means that the value of vi is fixed in m and vi is called a
fixed variable. m(vi) ∈ ⋆ means that the value of vi is free in m and vi is called
a free variable. A sub-space m is equivalent to a set of states:

SN [m] := {s ∈ SN | ∀v ∈ V : m(v) ∈ B =⇒ s(v) = m(v)}.

We denote S⋆
N = (B ∪ {⋆})n the set of all possible sub-spaces of N .

A sub-space is a trap space if it is also a trap set. Then we define a partial
order < on S⋆

N as: m < m′ if and only if SN [m] ⊂ SN [m′]. From this partial
order, we can define a minimal or maximal trap space as follows. A trap space
m is minimal if there is no trap space m′ such that m′ < m. A trap space m
is maximal if SN [m] ̸= SN and there is no trap space m′ such that m′ > m
and SN [m′] ̸= SN . It is worth noting that trap spaces of a Boolean network are
independent of the update scheme [29].

For illustration, let us consider the Boolean network N shown in Example 1.
Figures 1(a) and 1(b) show (SN ,⇌) and (SN , ↪→), respectively. Both (SN ,⇌)
and (SN , ↪→) have only two fixed points ({[0 1 0]} and {[1 1 0]}). {[0 0 0], [0
1 0], [0 1 1]} is a trap set of both (SN ,⇌) and (SN , ↪→). However, it is not an
attractor because it is not minimal. N has all ten trap spaces along with their

Trap spaces of multi-valued networks 5

equivalent sets of states as follows:

{[0 1 0]} ∼ n1 = 010,

{[1 1 0]} ∼ n2 = 110,

{[0 1 0], [1 1 0]} ∼ n3 = ⋆10,

{[1 1 0], [1 1 1]} ∼ n4 = 11⋆,

{[0 0 0], [0 1 0]} ∼ n5 = 0 ⋆ 0,

{[0 1 0], [0 1 1]} ∼ n6 = 01⋆,

{[0 0 0], [0 0 1], [0 1 0], [0 1 1]} ∼ n7 = 0 ⋆ ⋆,

{[0 0 0], [0 1 0], [1 0 0], [1 1 0]} ∼ n8 = ⋆ ⋆ 0,

{[0 1 0], [0 1 1], [1 1 0], [1 1 1]} ∼ n9 = ⋆1⋆,

{[0 0 0], [0 0 1], [0 1 0], [0 1 1], [1 0 0], [1 0 1], [1 1 0], [1 1 1]} ∼ n10 = ⋆ ⋆ ⋆.

Note that n10 is a special trap space where all variables are free (i.e., SN [n10] =
SN). We can see that N has two minimal trap spaces (n1 and n2) and three
maximal trap spaces (n7, n8, and n9).

Example 1. Consider the following Boolean network N = ⟨V, F ⟩ where V =
{v1, v2, v3} and

F =

f1 = v1 ∧ v2,

f2 = 1,

f3 = 0.

[0 0 0]

[0 1 0]

[0 1 1]

[1 0 0]

[1 1 0]

[1 1 1]

[0 0 1]

[1 0 1]

(a)

[0 0 0]

[0 1 0]

[0 1 1]

[1 0 0]

[1 1 0]

[1 1 1]

[0 0 1]

[1 0 1]

(b)

Fig. 1: The STGs under the synchronous update scheme (a) and under the fully
asynchronous update scheme (b) of the Boolean network shown in Example 1.
Attractors are highlighted in bold.

6

2.2 Multi-valued networks

Definition 2. A Multi-Valued Network (MVN) is a tuple M = ⟨V,K, F ⟩ where:

– V = {v1, . . . , vn} is the set of nodes. We use vi to denote both the node vi
and its associated integer variable.

– K = {K1, . . . ,Kn} is the set of intervals of integers. Interval Ki (or Kvi
)

denotes the possible values of node vi (i.e., the domain of vi). Note that it is
possible that |Ki| ≠ |Kj |, i ̸= j. In the literature, it is conventionally assumed
that Ki = {0, . . . , |Ki| − 1}.

– F = {f1, . . . , fn} is the set of update functions. Each function fi is associated
with node vi and satisfies fi :

∏n
j=1 Kj 7→ Ki.

To our best knowledge, there is no unified arithmetic formulation of update
functions. [38] uses fuzzy logic to represent update functions, but it only deals
with the case that Ki = Kj ,∀i, j, i.e., all the nodes have the same domain. [14]
and [40] use rule-based descriptions, where each rule includes a set of condi-
tions on input nodes of a node vi and the value that vi will receive under these
conditions. We shall discuss the formulation of update functions of multi-valued
networks in detail in Subsection 2.4.

Similar to a state of a Boolean network, we can define a state of a multi-
valued network as a vector v = [v1, . . . , vn] where vi ∈ Ki represents the value of
node vi. A state v can be seen as a mapping that maps every node vi to a value
in Ki. We denote the set of all possible states of a multi-valued network M by
SM =

∏n
i=1 Ki.

General and unitary multi-valued networks There are two main types of
multi-valued networks: general [44] and unitary [47,14]. For general multi-valued
networks, the value of node vi is updated by

vi(t+ 1) = fi(v(t)),

where v(t) is the state of the multi-valued network at time step t and vi(t + 1)
is the state of node vi at time step t+1. For unitary multi-valued networks, the
update semantics is as follows:

vi(t+ 1) =

vi(t) if vi(t) = fi(v(t)),

vi(t) + 1 if vi(t) < fi(v(t)),

vi(t)− 1 if vi(t) > fi(v(t)),

for all node vi ∈ V . Similar to the case of Boolean networks, an updating scheme
is also employed for a multi-valued network. Now, the concepts of state transition
graphs, trap sets and attractors for multi-valued networks are similar to those
for Boolean networks.

Example 2. We use the following general multi-valued network M = ⟨V,K, F ⟩
as our straight example.

Trap spaces of multi-valued networks 7

– V = {v1, v2}
– K1 = {0, 1}, K2 = {0, 1, 2}
–

F =

f1 =

{
0 if v1 = 0 or v2 = 0,

1 otherwise.

f2 =

0 if v1 = 2 or v2 = 2,

1 if v1 = 1 and v2 = 0 or v1 = 1 and v2 = 1 or v1 = 0 and v2 = 1,

2 otherwise.

Figure 2(a) shows the state transition graph of M under the fully asyn-
chronous update scheme. M has all six trap sets: {[0 1]}, {[1 1]}, {[0 0], [0 2]},
{[0 1], [1 1]}, {[0 0], [0 1], [0 2]}, and {[0 0], [0 1], [0 2], [1 0], [1 1], [1 2]}. However,
M has all three attractors: two fixed points ({[0 1]} and {[1 1]}) and one cyclic
attractor ({[0 0], [0 2]}). Figure 2(b) shows the STG of the unitary counterpart
of M. This counterpart has only two fixed points ({[0 1]} and {[1 1]}).

[0 0]

[0 1]

[0 2]

[1 0]

[1 1]

[1 2]

(a)

[0 0]

[0 1]

[0 2]

[1 0]

[1 1]

[1 2]

(b)

Fig. 2: The state transition graphs under the fully asynchronous update scheme
of (a) the general multi-valued network shown in Example 2 and (b) its unitary
counterpart. Attractors are highlighted in bold.

2.3 Van Ham Boolean mapping

In [26], an encoding of unitary multi-valued networks into Boolean networks is
proposed. This encoding preserves many (but not all) dynamical properties of
MVNs and as such, the resulting Boolean network can be often used in the place
of the original MVN.

For completeness, we briefly recall the definition of the Van Ham encod-
ing: Let us assume a multi-valued network M = ⟨V,K, F ⟩. Now, let us assume a
variable v ∈ V such that |Kv| > 2, i.e. variable v is not Boolean (for Boolean vari-
ables, no transformation is necessary). Without the loss of generality, we assume

8

Kv is an interval that starts from zero (i.e. Kv = {0, . . . , |Kv| − 1}). For conve-
nience, we define maxv to be |Kv|−1. The Van Ham encoding expands such vari-
able v into maxv Boolean variables which we denote uv=1, uv=2, . . . , uv=maxv .

The interpretation of these Boolean variables is the following: v = x if and
only if uv=i = true for all i ≤ x and uv=j = false for all j > x. For example,
v = 0 when all the Boolean variables are false. Meanwhile, v = 2 when uv=1 and
uv=2 are true, but the remaining Boolean variables are false.

The update functions of each variable are then altered to accept such en-
coded values. The specific way in which this is performed depends on the actual
representation of the update functions. However, the core idea of this transfor-
mation is that any test for equality or inequality on multi-valued variable v can
be transformed into a logical test on the Boolean variables uv=i. For example, to
test that v ≥ k, we only need to check whether uv=k is true. To test that v = k,
we have to check that uv=k is true and uv=k+1 is false, and so on. Since addi-
tion, multiplication and other arithmetic operations on a final domain can be
expanded into logical operations, this process can be also performed for function
representations that incorporate integer arithmetic.

An important property of this encoding is that a single unitary integer tran-
sition (i.e. a +/−1 change) always corresponds to the update of a single Boolean
variable. For example, a state change from v = 1 to v = 2 only updates Boolean
variable uv=2 (from false to true).

However, note that the encoded Boolean network also admits values that do
not correspond to any valid integer interpretation of variable v (e.g. uv=1 = false
and uv=2 = true). In general, the Booleanised update functions ensure that
a correctly encoded state cannot transition into an incorrectly encoded state.
Hence, for example, a simulation initiated in a valid state will only visit valid
states. However, the presence of these invalid states can still influence some
aspects of formal dynamical analysis, such as the computation of maximal trap
spaces (as we outline later in Section 3.2).

2.4 Petri nets

Definition 3. A Petri net is a weighted bipartite directed graph (P, T,W), where
P is a non-empty finite set of vertices called places, T is a non-empty finite set
of vertices called transitions, P ∩ T = ∅, and W : (P × T) ∪ (T × P) 7→ N is a
weight function attached to the arcs.

A marking for a Petri net is a mapping M : P 7→ N that assigns a number of
tokens to each place. A place p is marked by a marking M if and only if M(p) > 0.
Marking M can be seen as a subset of P that contains all marked places by M .
We shall write pred(x) (resp. succ(x)) to represent the set of vertices that have
a (non-zero weighted) arc leading to (resp. coming from) x. In this work, we
consider a class of Petri nets called 1-safe Petri nets where every place has at
most 1 token and all arcs are of weight 1. In this case, weights are implicitly
omitted in the arcs of a Petri net.

Trap spaces of multi-valued networks 9

A transition t ∈ T is enabled at a marking M if and only if pred(t) ⊆ M . The
firing of t leads to a new marking M ′ specified by M ′ = (M\pred(t)) ∪ succ(t).
Note that when multiple transitions are enabled, we need to embed one firing
scheme (similar to the update scheme of a multi-valued network) to the Petri
net. The classical firing scheme is that only one of the enabled transition is
non-deterministically chosen to fire [37].

Link between Petri nets and multi-valued networks The link between
Boolean networks and Petri nets was originally established in [9]. This encoding
was then extended to multi-valued networks in two ways, either in [8] with non
1-safe Petri nets or more recently in [10] with 1-safe Petri nets but many more
places. Since we use 1-safe Petri nets in this work, we briefly recall the encoding
by [10] here.

Informally, the encoded Petri net P of a multi-valued network M has one
place per possible level of a node. Denote pjvi the place corresponding to the
level j of node vi. A transition tkvi of P corresponds to a condition for changing
the state of node vi. Such a condition can typically be built from the update
function of the node and be in the form that vi changes from state j1 ∈ Ki to
state j2 ∈ Ki if and only if the conjunct of value constraints on the input nodes
of vi holds. Then it creates a directional arc from tkvi to pj2vi , a directional arc
from pj1vi to tkvi , and bidirectional arcs from tkvi to the places corresponding to the
satisfying values of the input nodes of vi that appear in the conjunct of value
constraints. Let s be a state of M and Ms be its corresponding marking in P.
It holds that vi ∈ V , s(vi) = j if and only if Ms(p

j
vi
) = 1. Note also that at any

marking M of P, it always holds that
|Ki|∑
j=0

M(pjvi) = 1,∀vi ∈ V.

More details of this encoding can be found at Appendix A of [10].
The main property of this encoding is that it is completely faithful with

respect to the update scheme of the original multi-valued network. For each node
v of M, only transitions corresponding to v can change the current marking of
the places corresponding to v (i.e., pjv,∀j ∈ Kv). In addition, at any marking
M at most one of such transitions is enabled because

∑
j∈Kv

M(pjv) = 1 holds.
Hence, for any update scheme in M, we have a corresponding firing scheme in
P, which preserves the equivalence between the dynamics of M and P.

Note that to obtain the Petri net encoding of the unitary counterpart U of
M, we can only adjust P a bit. Specifically, let PU be the Petri net encoding of
U . PU and P share the same set of places. For every transition tjvi of P, we add
this transition along with all the arcs connecting to it to PU . Let pj1vi and pj2vi be
the input place and output place of tjvi corresponding to node vi, respectively.
If j2 > j1, we replace in PU the arc (tjvi , p

j2
vi) by the arc (tjvi , p

j1+1
vi). If j2 < j1,

we replace in PU the arc (tjvi , p
j2
vi) by the arc (tjvi , p

j1−1
vi). Following the update

semantics of a unitary multi-valued network, there is an equivalence between the
dynamics of U and PU .

10

For illustration, let us reconsider the general multi-valued network M shown
in Example 2. Figure 3(a) shows the Petri net encoding of M. Places p0v1 and
p1v1 (resp. p0v2 , p

1
v2 , and p2v2) represents two (resp. three) possible values of node

v1 (resp. v2). Transition t1v1 represents the change from 1 to 0 of node v1 with
the condition that the current value of v2 is 0 and the current value of v1 is 1.
Transition t1v2 represents the change from 0 to 2 of node v2 with the condition
that the current value of v2 is 0 and the current value of v1 is 0. Marking
M = {p0v1 , p

2
v2} corresponds to state [0 2] of M. Figure 3(b) shows the Petri net

encoding of the unitary counterpart of M. The arc (t1v2 , p
2
v2) is replaced by the

arc (t1v2 , p
1
v2).

p0v1

p1v1

p0v2

p1v2

p2v2

t1v1

t1v2

t2v2

t3v2

(a)

p0v1

p1v1

p0v2

p1v2

p2v2

t1v1

t1v2

t2v2

t3v2

(b)

Fig. 3: The Petri net encoding of (a) the general multi-valued network shown in
Example 2 and (b) its unitary counterpart.

Encoding of real-world models as 1-safe Petri nets In our work, we con-
sider two primary source formats of multi-valued networks: The SBML-qual for-
mat [7] (XML-based) and BMA (BioModelAnalyzer) format [5] (JSON-based).
These differ significantly in their structure and capabilities, including the encod-
ing of the multi-valued update functions.

In particular, SBML employs a representation through a list of Boolean
terms, where each update function is given in the form:

fi(x) =

y1 t1vi

(x)

y2 t2vi
(x)

. . .

yk else

Here, y1, . . . , yk ∈ Ki and each tjvi is a term
∏n

l=1 Kl → B which uses standard
equality and inequality propositions on the integer variables. SBML requires that
all tjvi terms are exclusive, i.e. for any x ∈ SM, it cannot hold that tavi(x)∧ tbvi(x)
for any a ̸= b. This guarantees that the update function is well defined. Note

Trap spaces of multi-valued networks 11

that it is not required that ya ̸= yb for a ̸= b (i.e. the output values can repeat).
The outputs also do not need to be exhaustive. However, this is only a technical
limitation, as it is easy to transform such fi into a form where the outputs are
all unique and exhaustive. Finally, note that the condition for the “default” value
yk can be easily constructed as ¬t1vi(x) ∧ . . . ∧ ¬tk−1

vi (x).
Meanwhile, the BMA format describes the update functions through a lan-

guage of algebraic expressions, with support for addition (+), subtraction (−),
multiplication (·) and division (/), as well as other special functions like average
and rounding. Furthermore, BMA employs a normalisation transformation on
function inputs when the input domain differs from the output domain. That
is, an input xj in the range Kj is normalized to the range Ki when used in the
update function fi. As such, while BMA models only admit integer variables,
the update functions are more akin to rational functions.

To support both formats, we implement a translation through an intermedi-
ate symbolic representation facilitated using binary decision diagrams (BDDs) [6].
In accordance with the Petri net representation, the BDD admits a Boolean vari-
able for every possible level of each variable (places pjvi in the PN encoding). Fur-
thermore, every BDD is normalised such that pjvi ⇒

∧
k ̸=j ¬pkvi . That is, every

satisfying valuation of the BDD correctly encodes one integer value of variable
vi. A multi-valued function fi in then encoded as a list of BDDs B0

f1
, . . . , BKi

fi
,

each BDD giving necessary conditions for a particular output level:

fi(x) =

0 B0

vi(x)

1 B1
vi(x)

. . .

max(Ki) BKi
vi (x)

Note that this trivially corresponds to the SBML representation once the
model is normalized to include every output exactly once: Every term tjvi can
be re-encoded as a BDD Bj

vi , since integer propositions and logical operators
correspond to common operations on BDDs. For the BMA format, we unfortu-
nately have to enumerate the whole function table and re-encode this table into
individual BDDs Bj

vi .
While there are frameworks which partially support symbolic evaluation of

such functions, e.g., algebraic decision diagrams [3], we are not aware of any
implementation that would support all the operations required by BMA. As
such, we opted for this rather brute-force approach to ensure ideal compatibility
with existing BMA toolchain. As we later show in the evaluation, while this
introduces additional overhead to model translation, due to the fact that most
update functions are of a relatively low arity, the overhead is still manageable.

Using this intermediate representation, we can then construct the Petri net
which represents either the general or unitary semantics of the original model.
In the general semantics, variable vi can transition from value a to value b when
pavi ∧Bb(x) holds. We enumerate the satisfying clauses of the resulting decision
diagram, each clause giving a partial variable valuation under which the value of

12

vi can be updated. Each such clause then results in the creation of one Petri net
transition as outlined at the beginning of this section. For the unitary semantics,
we implement a transition from a to a+1 by enumerating the satisfying clauses
of the BDD pavi ∧

∨
b>a B

b
vi
(x) (symmetrically for transitions into a− 1).

The resulting Petri net then faithfully encodes the dynamics of the initial
multi-valued network. Note that while the number of places in the Petri net is
always fixed given a particular set of variables, the number of transitions depends
on the structure of the individual update functions and can vary greatly.

2.5 Petri net siphons

Siphons are a static property of Petri nets with many applications in the analysis
and control of Petri nets [33]. We recall here the basic definition of a siphon
(Definition 4) establishing that to produce something in a siphon you must
consume something from the siphon. This definition corresponds to the idea
that a siphon is a set of places that once marked remains marked.

Definition 4. A siphon of a Petri net (P, T,W) is a set of places S such that:

∀t ∈ T, S ∩ succ(t) ̸= ∅ ⇒ S ∩ pred(t) ̸= ∅.

Note that ∅ is trivially a siphon.

3 Trap spaces of multi-valued networks

The concept of trap spaces for Boolean networks was pioneered in [29]. It has
been proved useful for the Boolean network analysis. It is natural to try to define
the similar concept for multi-valued networks, since they are a generalization of
Boolean networks. However, this direction has not been explored yet. Hereafter,
we shall give a formal definition of trap spaces in multi-valued networks (Subsec-
tion 3.1), investigate their properties (Subsection 3.2), and finally discuss their
theoretical applications (Subsection 3.3).

3.1 Definition

First, we define the concept of sub-spaces for a multi-valued network.

Definition 5. A sub-space m of a multi-valued network M = ⟨V,K, F ⟩ is a
mapping m that assigns each node of M to a non-empty subset of Ki, i.e.,

m(vi) ⊆ Ki,m(vi) ̸= ∅,∀vi ∈ V.

A sub-space m is equivalent to the set of states

SM[m] := {s ∈ SM|∀v ∈ V : s(v) ∈ m(v)}.

For example, m = {0, 1}{0, 2} is a sub-space of the multi-valued network shown
in Example 2. m is equivalent a set of four states of the multi-valued network:
[0 0], [0 2], [1 0], and [1 2].

Trap spaces of multi-valued networks 13

Definition 6. A sub-space m of a multi-valued network M is a trap space of
M if it is also a trap set of the state transition graph (SM,→).

We denote the set of all possible sub-spaces of M as S⋆
M =

∏n
i=1(P(Ki) \ ∅)

where P(Ki) denotes the set of all subsets of Ki. Then, we define a partial
order < on S⋆

M as: m < m′ if and only if SM[m] ⊆ SM[m′] and SM[m] ̸=
SM[m′]. Equivalently, m < m′ if and only if m(vi) ⊆ m′(vi),∀vi ∈ V and
∃vi ∈ V,m′(vi) ̸= m(vi). From the partial order, we define minimal and maximal
trap spaces as follows.

Definition 7. A trap space m of a multi-valued network M is minimal if and
only if there is no trap space m′ ∈ S⋆

M such that m′ < m.

Definition 8. A trap space m of a multi-valued network M is maximal if and
only if SM[m] ̸= SM and there is no trap space m′ ∈ S⋆

M such that m < m′ and
SM[m′] ̸= SM.

For illustration, let us consider the general multi-valued network M shown
in Example 2 with the fully asynchronous update scheme. (SM, ↪→) has six
trap sets (see Figure 2(a)). We can easily see that (SM, ↪→) has six trap spaces
corresponding to the six trap sets as follows:

{[0 1]} ∼ m1 = {0}{1},
{[1 1]} ∼ m2 = {1}{1},

{[0 0], [0 2]} ∼ m3 = {0}{0, 2},
{[0 1], [1 1]} ∼ m4 = {0, 1}{1},

{[0 0], [0 1], [0 2]} ∼ m5 = {0}{0, 1, 2},
{[0 0], [0 1], [0 2], [1 0], [1 1], [1 2]} ∼ m6 = {0, 1}{0, 1, 2}.

Note that SM[m6] = SM. Then, we can see that (SM, ↪→) has three minimal
trap spaces (m1, m2, and m3) and two maximal trap spaces (m4 and m5). Let U
be the unitary counterpart of M. Similarly, (SU , ↪→) has two minimal trap spaces
({0}{1} and {1}{1}) and three maximal trap spaces ({0, 1}{0, 1}, {0, 1}{1, 2},
and {0}{0, 1, 2}).

3.2 Properties

Characterization of trap spaces Similar to the characterization of trap
spaces in the Boolean case [29], it is possible to characterize trap spaces of
a multi-valued network via its update functions. We first denote dom(f) and
img(f) the domain and the image of the function f , respectively. Let D be
a subset of dom(f). Then f [D] is the restricted function of f under D where
f [D] = {(x, y) | (x, y) ∈ f, x ∈ D}. We define the image F [m] of a sub-space m
under F as a sub-space m′ such that m′(vi) = img(fi[SM[m]]), for every vi ∈ V .

Theorem 1. Let M = ⟨V,K, F ⟩ be a general multi-valued network. A sub-space
m is a trap set of (SM,→) if and only if F [m] ≤ m.

14

Proof. m ∈ S⋆
M is a trap set of (SM,→) if and only if there are no x ∈ SM[m]

and y ∈ SM \ SM[m] such that x → y. This is equivalent to img(fi[SM[m]]) ⊆
m(vi),∀vi ∈ V , which is equivalent to F [m] ≤ m by the definition of the partial
order <. ⊓⊔

For the case of unitary multi-valued networks, the updated state of a node
is not directly obtained from the result of its associated update function on the
current state. However, a unitary multi-valued network U can be equivalent to
a general multi-valued network MU = ⟨V U ,KU , FU ⟩ where V U = V,KU =
K,FU = {fU

1 , . . . , fU
n }. Each fU

i is uniquely obtained from fi. Formally,

fU
i :=

{
(x, y′) | (x, y) ∈ fi, y

′
i = xi +

yi − xi

|yi − xi|

}
.

Note that fU
i is fixed for every vi ∈ V . In addition, if we want to represent

both fi and fU
i as expressions, we can consider the use of fuzzy logic [38] or the

formulation used in [47].

Theorem 2. Let M = ⟨V,K, F ⟩ be a unitary multi-valued network. A sub-space
m is a trap set of (SM,→) if and only if FU [m] ≤ m.

Proof. This is similar to the proof of Theorem 1 with FU plays the role of F . ⊓⊔

From Theorems 1 and 2, the trap spaces of a (general or unitary) multi-
valued network are independent of the update scheme. This property is similar
to the Boolean case as we expected. Hence, trap spaces can be seen as a static
property of a (general or unitary) multi-valued network.

Separation of minimal trap spaces Hereafter, we prove the separation of
minimal trap spaces of a multi-valued network. Specifically, all minimal trap
spaces are mutually disjoint. This property is important because we can use it
to approximate the set of attractors of the multi-valued network (see Subsec-
tion 3.3).

Theorem 3. Let M = ⟨V,K, F ⟩ be a multi-valued network. For any two distinct
minimal trap spaces m1 and m2 of M, we have that SM[m1] ∩ SM[m2] = ∅.

Proof. If M has only one minimal trap space, then the theorem trivially holds.
Note that M always has at least one minimal trap space. Hence, we consider
the case that M has at least two minimal trap spaces.

Consider any two distinct minimal trap spaces m1 and m2. Assume that
SM[m1] ∩ SM[m2] ̸= ∅. Then, there is a sub-space m such that

m(vi) = m1(vi) ∩m2(vi),m(vi) ̸= ∅,∀vi ∈ V.

Let s be an arbitrary state in SM[m]. Clearly, s ∈ SM[m1] and s ∈ SM[m2].
For any state s′ reachable from s regardless of the update scheme of M, we
s′ ∈ SM[m1] and s′ ∈ SM[m2] by the definition of a trap set. Then, s′ ∈ SM[m],
leading to m is trap space of M. Since m1 ̸= m2, m < m1 or m < m2, which
contradicts to the minimality of m1 and m2. Hence, SM[m1]∩ SM[m2] = ∅. ⊓⊔

Trap spaces of multi-valued networks 15

Relations with respect to the Boolean mapping There are several work [15,14]
that tries to encode a multi-valued network by a Boolean network. Most of them
use the popular Boolean mapping (Van Ham mapping) [26] and focus on uni-
tary (not general) multi-valued networks. In [15], it is proved that the Van Ham
Boolean mapping preserves attractors of a unitary multi-valued network with re-
spect to the fully asynchronous update scheme. This Boolean mapping has been
implemented in several popular tools in systems biology such as GINsim [40] and
and bioLQM [7]. A natural question is whether the Van Ham Boolean mapping
preserves trap spaces of a multi-valued network. Hereafter, we shall show our
theoretical findings with respect to trap spaces of multi-valued networks.

First, we show two counterexamples (Examples 3 and 4) with respect to
minimal and maximal trap spaces of general multi-valued networks, respectively.

Example 3. Consider the general multi-valued network M shown in Example 2.
Its encoded Boolean network following the Van Ham Boolean mapping is the
Boolean network N shown in Example 1. M has three minimal trap spaces:
m1 = {0}{1}, m2 = {1}{1}, and m3 = {0}{0, 2}. N has only two minimal trap
spaces: n1 = 010 and n2 = 110. n1 corresponds to m1 and n2 corresponds to
m2. However, there is no minimal trap space of N corresponding to m3.

Example 4. Consider the general multi-valued network M shown in Example 2.
Its encoded Boolean network following the Van Ham Boolean mapping is the
Boolean network N shown in Example 1. M has two maximal trap spaces:
m4 = {0, 1}{1} and m5 = {0}{0, 1, 2}. N has three maximal trap spaces: n7 =
0 ⋆ ⋆, n8 = ⋆ ⋆ 0, and n9 = ⋆1⋆. n7 corresponds to m5. However, n8 corresponds
to the sub-space {0, 1}{0, 1} and n9 corresponds to the sub-space {0, 1}{1, 2}.
None of them corresponds to m4.

Second, we show a counterexample (Example 5) with respect to maximal trap
spaces of unitary multi-valued networks. For the case of minimal trap spaces, we
show that the Van Ham Boolean mapping preserves all the minimal trap spaces
of a unitary multi-valued network. For the details, see Appendix A.

Example 5. Consider the unitary multi-valued network U where V = {v1, v2},
K1 = K2 = {0, 1, 2}, and

F =

f1 =

0 if v1 = 0 or v2 = 0,

1 if v1 = 1 and v2 = 1 or v1 = 1 and v2 = 2 or v1 = 2 and v2 = 1,

2 otherwise.

f2 =

0 if v1 = 2 or v2 = 2,

1 if v1 = 1 and v2 = 0 or v1 = 1 and v2 = 1 or v1 = 0 and v2 = 1,

2 otherwise.

Let N be the encoded Boolean network of U by the Van Ham Boolean mapping.
U has two maximal trap spaces: u1 = {0, 1}{0, 1, 2} and u2 = {0, 1, 2}{0, 1}. N
has three maximal trap spaces: n1 = ⋆0 ⋆ ⋆, n2 = ⋆ ⋆ ⋆0, and n3 = 0 ⋆ ⋆⋆. n1

16

and n2 correspond to u1 and u2, respectively. In U , {0}{0, 1, 2} is a trap space
smaller than the trap space u1, thus it is not maximal. n3 corresponds to this
trap space. However, in N , the presence of an inadmissible state 01 for node v1
makes n3 maximal.

Finally, we prove that the Van Ham Boolean mapping preserves fixed points
of both general and unitary multi-valued networks. It is worth recalling that a
fixed point of a multi-valued network is a special trap space. Specifically, a trap
space m is a fixed point if and only if |m(vi)| = 1 for every node vi ∈ V .

Theorem 4. Let M = ⟨V,K, F ⟩ be a (general or unitary) multi-valued network
and N = ⟨V N , FN ⟩ be its encoded Boolean network using the Van Ham Boolean
mapping. Then there is a bijection between the set of fixed points of M and that
of N .

Proof. For the case of unitary multi-valued networks, this theorem is a direct con-
sequence of the theoretical result showing that the set of attractors of M is equiv-
alent to that of N with respect to the fully asynchronous update scheme [15].
The reason is that fixed points of a unitary multi-valued network are independent
of the update scheme. Now, we only consider general multi-valued networks. Let
U be the unitary counterpart of M. Following the update semantics of general
and unitary multi-valued networks, a fixed point of M is also a fixed point of U
and vice versa. Hence, there is also a bijection between the set of fixed points of
M and that of N . ⊓⊔

3.3 Theoretical applications

Model reduction Let m be a trap space of a multi-valued network M =
⟨V,K, F ⟩. We define a new multi-valued network Mm = ⟨V m,Km, Fm⟩ such
that

V m = V \ {vi | vi ∈ V, |m(vi)| = 1} ,
Km = {Km

i | vmi ∈ V m,Km
i = m(vmi)} ,

Fm = {fm
i | vmi ∈ V m, fm

i = fi[SM[m]]|A} ,

where A =
∏|V m|

j=1 Km
ij

and fi[SM[m]]|A is the restriction of fi[SM[m]] to A. We
can easily see that Mm captures the whole dynamics of the part of state space
of M contained in m. Specifically, a transition of any two states in SM[m] is
equivalent to a transition in the state transition graph of Mm. This property
makes a natural model reduction technique.

Attractor approximation A trap space is a trap set and an attractor is a
minimal trap set of a multi-valued network M. Therefore, a trap space contains
at least one attractor of M regardless of the update scheme. However, two dis-
tinct trap spaces can overlap. We have proved in Subsection 3.2 that two any
minimal trap spaces are disjoint. Hence, a minimal trap space contains at least

Trap spaces of multi-valued networks 17

one attractor and two any attractors contained in two distinct minimal trap
spaces are disjoint.

With the above property, the set of minimal trap spaces of M can be an
approximation of the set of attractors of M regardless of the update scheme.
See Examples 6, 7, and 8 for three cases where the set of minimal trap spaces
is not exactly the set of attractors. Note that a minimal trap space m cannot
contain both fixed points and cyclic attractors. Indeed, if it holds, then there is
another trap space smaller than m because a fixed point is a special trap space,
which contradicts to the minimality of m. Furthermore, the set of attractors of
M contained in m is equivalent to the set of attractors of the reduced multi-
valued network obtained by the above model reduction. This can be helpful for
attractor detection in multi-valued networks.

Example 6. Consider the general multi-valued network M = ⟨V,K, F ⟩ where:

– V = {v1, v2}
– K1 = {0, 1}, K2 = {0, 1, 2}
–

F =

f1 =

{
0 if v1 = 0 and v2 = 1 or v1 = 1 and v2 = 0 or v1 = 1 and v2 = 2,

1 otherwise.

f2 =

0 if v1 = 0 or v2 = 1 or v1 = 1 and v2 = 0,

1 if v1 = 0 or v2 = 0 or v1 = 1 and v2 = 2,

2 otherwise.

Figure 4(a) shows the state transition graph of M under the fully asyn-
chronous update scheme. M has only one minimal trap space that is {0, 1}{0,
1, 2}. This minimal trap space contains two asynchronous attractors of M: {[0
0], [1 0], [0 1]} and {[1 2], [1 1], [0 2]}.

Example 7. Consider the general multi-valued network M = ⟨V,K, F ⟩ where:

– V = {v1, v2}
– K1 = {0, 1}, K2 = {0, 1, 2}
–

F =

f1 =

{
0 if v1 = 0 and v2 = 1 or v1 = 1 and v2 = 0 or v1 = 1 and v2 = 1,

1 otherwise.

f2 =

0 if v1 = 0 or v2 = 1 or v1 = 1 and v2 = 0,

1 if v1 = 0 or v2 = 0 or v1 = 1 and v2 = 1,

2 otherwise.

Figure 4(b) shows the state transition graph of M under the fully asyn-
chronous update scheme. M has only one minimal trap space that is {0, 1}{0,
1, 2}. This minimal trap space contains the sole asynchronous attractor of M:
{[0 0], [1 0], [0 1]}. [1 1], [1 2], [0 2] are three states included in the minimal trap
space, but they do not belong to the asynchronous attractor.

18

Example 8. Consider the general multi-valued network M = ⟨V,K, F ⟩ where:

– V = {v1, v2}
– K1 = {0, 1}, K2 = {0, 1, 2}
–

F =

f1 =

{
0 if v1 = 0 and v2 = 1 or v1 = 1 and v2 = 0

1 otherwise.

f2 =

0 if v1 = 0 or v2 = 1 or v1 = 1 and v2 = 0,

1 if v1 = 0 or v2 = 0 or v1 = 1 and v2 = 2,

2 otherwise.

Figure 4(c) shows the state transition graph of M under the fully asyn-
chronous update scheme. M has only one minimal trap space that is {1}{1, 2}.
This minimal trap space contains an asynchronous attractor of M: {[1 1], [1 2]}.
However, M has another asynchronous attractor (i.e., {[0 0], [1 0], [0 1]}) that
is not included in any minimal trap space of M.

[0 0]

[0 1]

[0 2]

[1 0]

[1 1]

[1 2]

(a)

[0 0]

[0 1]

[0 2]

[1 0]

[1 1]

[1 2]

(b)

[0 0]

[0 1]

[0 2]

[1 0]

[1 1]

[1 2]

(c)

Fig. 4: State transition graphs under the fully asynchronous update scheme of
(a) the general multi-valued network shown in Example 6, (b) the general multi-
valued network shown in Example 7, and (c) the general multi-valued network
shown in Example 8, respectively.

Control and decision making Control of biological systems is one of the cen-
tral issues in systems biology with various applications in systems-based drug
discovery and cancer treatment [28,2]. Roughly speaking, this problem can be
defined as the design of intervention strategies (control policies) to beneficially
alter the dynamics of the considered system [2]. For example, in the Boolean net-
work model of a gene regulatory network, we can control one or more genes (e.g.,
knockout or overexpression) such that the model moves out of undesirable states
(e.g., disease or cancerous states) and moves into desirable ones (e.g., healthy
or normal states). Such types of states are associated to attractors as a partic-
ular attractor (or set of attractors and their associated basins) supports states

Trap spaces of multi-valued networks 19

that resemble a pathological phenotype. Since biological systems are often highly
non-linear, existing methods in control theory cannot be directly applied to this
control problem. Hence, it has attracted much attention from many research
communities. Note that there are many formulations for the control problem in
biological systems with a variety of approaches and goals. We refer the reader
to [19,46] and references therein for more detailed discussions.

Regarding the control problem of Boolean network models of biological sys-
tems, there are several methods [19,12] using trap spaces of a Boolean network
to compute control strategies that guide this Boolean network converge into a
desirable phenotype (e.g., a minimal trap space). These methods are indepen-
dent of the update scheme and have been shown useful for control of biological
systems [12]. Since we have defined the concept of trap spaces for multi-valued
networks, it is potentially possible to extend these methods to those for multi-
valued networks. In addition, the work [45] uses the concept of stable motifs to
build the succession diagram of a Boolean network that serves as a summary of
the decisions in the network dynamics that lead to successively more restrictive
nested stable motifs. The succession diagram is useful for control and decision
making of this Boolean network. It has been shown that a stable motif of a
Boolean network is equivalent to a maximal trap space of this Boolean network.
Analogously, a stable motif of a multi-valued network [20] is equivalent to a max-
imal trap space of this multi-valued network. Hence, it is potentially possible to
apply this stable motifs-based approach to multi-valued networks.

Extending the existing trap spaces-based methods for control of Boolean net-
works to those for control of multi-valued networks are potential and promising.
However, it is out of scope of the present article. We leave this direction as future
work.

4 Trap spaces as conflict-free siphons

Recently, we have explored a connection between trap spaces of a Boolean net-
work and siphons of its Petri net encoding [55]. Once we have formally defined
the concept of trap spaces for multi-valued networks in Subsection 3.1, we shall
generalize this connection to that for trap spaces of multi-valued networks and
siphons of Petri nets (Subsection 4.1). Not only a natural generalization, we in
addition add more substantially computational and theoretical results because
of the different characteristics of multi-valued networks as compared to Boolean
networks.

4.1 Relations

First, we add a definition related to any set of places of a Petri net encoding a
multi-valued network, and notably a siphon of such a net.

Definition 9. A set of places of Petri net P encoding multi-valued network
M = ⟨V,K, F ⟩ is conflict-free if it does not contain all the places corresponding

20

the possible states of the same node of M. Then, a conflict-free siphon S is said
to be maximal if and only if there is no conflict-free siphon S′ such that S ⊂ S′.
A conflict-free siphon S is said to be minimal if and only if S ̸= ∅ and there is
no conflict-free siphon S′ such that S′ ⊂ S and S′ ̸= ∅.

Then, we define the concept of mirror as follows.

Definition 10. Let m be a sub-space of multi-valued network M = ⟨V,K, F ⟩.
A mirror of m is a set of places S in the Petri net encoding P of M such that:

∀v ∈ V,∀i ∈ Kv, i ∈ m(v) ⇔ piv ̸∈ S and i ∈ Kv \m(v) ⇔ piv ∈ S.

Intuitively, every conflict-free siphon of P represents a mirror of some sub-
space m of M. Once the places in a siphon are unmarked, they remain unmarked.
This precisely corresponds to the closed property of a trap space (see Subsec-
tion 3.1). Hence, a conflict-free siphon of P corresponds to a trap space of M.
In addition, the maximality (resp. minimality) of a conflict-free siphon is equiv-
alent to as many (resp. less) fixed values as possible, hence the minimality (resp.
maximality) of a trap space. Hereafter, we formally prove these relations.

Theorem 5. Let M = ⟨V,K, F ⟩ be a multi-valued network and P be its Petri
net encoding. A sub-space m is a trap space of M if and only if its mirror S is
a conflict-free siphon of P.

Proof. First, we show that if m is a trap space of M, then S is a conflict-free
siphon of P (*). If m(vi) = Ki,∀vi ∈ V , then S = ∅ is trivially a conflict-free
siphon of P. Thus, we consider the case that S ̸= ∅. Assume that S is not
a siphon of P. Then, there is a transition t ∈ T such that S ∩ succ(t) ̸= ∅
but S ∩ pred(t) = ∅. This implies that there is a place pj1vi ∈ S such that
pj1vi ∈ succ(t) but pj1vi ̸∈ pred(t). By the characteristics of the encoding [10],
there is a directional arc from t to pj1vi and a directional arc from pj2vi to t with
j2 ̸= j1. Then pj2vi ̸∈ S because S∩pred(t) = ∅. We follow the following procedure
to find a state s ∈ SM[m] such that Ms(p) = 1,∀p ∈ pred(t) where Ms is the
corresponding marking in P of s. It is worth recalling that pred(t) cannot contain
two places corresponding to the same node of M. For every place pkvl ∈ pred(t)

(implying pkvl ̸∈ S), we set s(vl) = k. Then Ms(p
k
vl
) = 1 by the characteristics of

the encoding [10]. By the definition of a mirror, k ∈ m(vl) because pkvl ̸∈ S. For
the remaining nodes v of M, we set s(v) to any value in m(v). Overall, there is
always such a state s. Then t is enabled at marking Ms. Its firing leads to a new
marking M ′

s such that M ′
s(p

j1
vi) = 1. Let s′ be the corresponding state in M of

M ′
s. By the characteristics of the encoding [10], s′(vi) = j1. We have j1 ̸∈ m(vi)

because pj1vi ∈ S. Therefore, s′ ̸∈ SM[m]. For any firing scheme of P, the firing of
t always happens. Since a firing scheme of P is equivalent to an update scheme
of M, s can escape from the trap space m for any update scheme of M, which
contradicts to the property of a trap space. Hence, S is a siphon of P. By the
definition of a mirror, S is also a conflict-free one.

Second, we show that if S is a conflict-free siphon of P, then m is a trap space
of M (**). By the definition of a mirror, m is a sub-space of M. Let s be an

Trap spaces of multi-valued networks 21

arbitrary state in SM[m] and Ms be its corresponding marking in P. If there is a
place pjvi ∈ S such that Ms(p

j
vi) = 1, then s(vi) = j. Since s(vi) ∈ m(vi), pjvi ̸∈ S

by the definition of a mirror, which is a contradiction. Hence, Ms(p) = 0,∀p ∈ S.
In any marking M ′

s reachable from Ms regardless of the firing scheme of P, we
have M ′

s(p) = 0,∀p ∈ S by the dynamical property on markings of a siphon [33].
Let s′ be the corresponding state in M of M ′

s. If s′(vi) = k ̸∈ m(vi), then
pkvi ∈ S by the definition of a mirror and M ′

s(p
k
vi) = 1 by the characteristics

of the encoding [10], which is a contradiction. Hence, s′(vi) ∈ m(vi),∀vi ∈ V .
Then, s′ ∈ SM[m]. By the definition of a trap space and the arbitrariness of s,
m is a trap space of M.

From (*) and (**), we can conclude the proof. ⊓⊔

From the proof of Theorem 5, we can see that this theorem still holds for
any update scheme of the multi-valued network. The Petri net encoding of a
multi-valued network is independent of its update scheme and siphons are a
static property of a Petri net. Hence, trap spaces of a multi-valued network are
independent of its update scheme. Theorem 5 provides us another way comple-
mentary to the proofs of Theorems 1 and 2 for proving this property of trap
spaces in multi-valued networks. This exhibits the very first theoretical applica-
tion of the connection between trap spaces of multi-valued networks and siphons
of Petri nets.

Theorem 6. Let M = ⟨V,K, F ⟩ be a multi-valued network and P be its Petri
net encoding. A sub-space m is a minimal trap space of M if and only if its
mirror S is a maximal conflict-free siphon of P.

Proof. First, we show that if m is a minimal trap space of M, then S is a maximal
conflict-free siphon of P (*). Since m is a trap space of M, S is a conflict-free
siphon of P by Theorem 5. Assume that S is not maximal. Then there is another
conflict-free siphon S′ such that S ⊂ S′. By Theorem 5, there is a trap space m′

corresponding to S′. Following the definition of a mirror, m′(v) ⊆ m(v),∀v ∈ V ,
thus m′ < m. This is a contradiction because m is a minimal trap space. Hence,
S is a maximal conflict-free siphon of P.

Second, we show that if S is a maximal conflict-free siphon of P, then m is
a minimal trap space of M (**). Since S is a conflict-free siphon of P, m is a
trap space of M by Theorem 5. Assume that m is not minimal. Then there is
another trap space m′ such that m′ < m. By the definition of the partial order
<, m′(v) ⊆ m(v),∀v ∈ V and there is a v ∈ V such that m′(v) ⊂ m(v). Let
S′ be the mirror of m′. S′ is a conflict-free siphon by Theorem 5. Following the
definition of a mirror, S ⊂ S′, which is a contradiction because S is a maximal
conflict-free siphon. Hence, m is a minimal trap space of M.

From (*) and (**), we can conclude the proof. ⊓⊔

Theorem 7. Let M = ⟨V,K, F ⟩ be a multi-valued network and P be its Petri
net encoding. A sub-space m is a maximal trap space of M if and only if its
mirror S is a minimal conflict-free siphon of P.

22

Proof. Let S⋆
M be the set of all possible sub-spaces of M and S⋆

P be the set
of all possible conflict-free siphons of P. Let ε be the special sub-space where
ε(vi) = Ki,∀vi ∈ V . By the definition of a mirror, the mirror of ε is an empty
set. Note that ∅ ∈ S⋆

P . By considering only S⋆
M \ {ε} and accordingly S⋆

P \ {∅},
we can conclude the proof by using the similar reasoning shown in the proof of
Theorem 6.

For illustration, let us consider the general multi-valued network M shown in
Example 2. Its Petri net encoding PM is shown in Figure 3(a). {p0v2 , p

1
v2 , p

2
v2} is

a siphon of PM, however it is not a conflict-free one. PM has all six conflict-free
siphons corresponding to the six trap spaces of M as follows:

S1 = {p1v1 , p
0
v2 , p

2
v2} ∼ m1 = {0}{1},

S2 = {p0v1 , p
0
v2 , p

2
v2} ∼ m2 = {1}{1},

S3 = {p1v1
, p1v2} ∼ m3 = {0}{0, 2},

S4 = {p0v2 , p
2
v2} ∼ m4 = {0, 1}{1},

S5 = {p1v1} ∼ m5 = {0}{0, 1, 2},
S6 = ∅ ∼ m6 = {0, 1}{0, 1, 2}.

PM has three maximal conflict-free siphons (S1, S2, and S3) and two minimal
conflict-free siphons (S4 and S5). We can easily see the one-to-one correspon-
dence between the set of maximal (resp. minimal) conflict-free siphons and the
set of minimal (resp. maximal) trap spaces. Let U be the unitary counterpart of
M. Its Petri net encoding PU is shown in Figure 3(b). {p1v1 , p

1
v2} is not a siphon

of PU because transition t1v2 puts tokens into this set but it does not remove
tokens from this set. This is the reason why {0}{0, 2} is not a trap space of U .

4.2 Trap space computation

Hereafter, we propose several methods for computing several types of trap spaces
in multi-valued networks. These proposed methods mainly rely on the theoretical
results presented in Section 3.

Minimal and maximal trap space computation Besides minimal trap
spaces, maximal trap spaces also play a crucial role in the analysis and con-
trol of biological systems modeled by Boolean networks [29,46]. Notably, the
concept of stable motifs is the primary key for various excellent work in logical
modeling from Reka Albert’s group [62,20,46]. More specifically, they use stable
motifs, which are equivalent to maximal trap spaces [46], to build the succession
diagram of a Boolean network, which is a hierarchy of stable motifs and encom-
passes the entire repertoire of decisions that the model is capable of making [62].
Once the succession diagram is successfully built, it can be used to not only
identify attractors of this Boolean network under the fully asynchronous update
scheme [46] but also to control the dynamics of this Boolean network regardless

Trap spaces of multi-valued networks 23

of its update scheme [62,45]. In addition, the succession diagram’s leaf nodes
are the minimal trap spaces of the Boolean network [46]. Hence, we can see
that maximal trap spaces have broader applicability than minimal trap spaces.
In particular, using the stable motifs-based methods, many studies [50,61,16,36]
have obtained important biological results, notably, the suppression of epithelial-
to-mesenchymal transition [50], hair follicles cell fate control [16]. Recall that
a stable motif of a multi-valued network [20] is equivalent to a maximal trap
space of this multi-valued network. Analogously, maximal trap spaces also play
a crucial the analysis and control of biological systems modeled by multi-valued
networks. Hence, it is of great importance to compute maximal trap spaces in
multi-valued networks.

By Theorem 6 (resp. Theorem 7), we can reduce the problem of computing all
minimal (resp. maximal) trap spaces of a multi-valued network to the problem
of computing all maximal (resp. minimal) conflict-free siphons of its Petri net
encoding. It is noted that there are no existing methods specifically designed
for computing maximal conflict-free siphons (even maximal siphons) of a Petri
net. There are some existing methods [39] for computing minimal siphons of
a Petri net. Although they do not directly support the minimal conflict-free
siphon computation, we can adjust them a little to compute minimal conflict-
free siphons. For example, with the SAT-based method [39], we can add more
constraints to the SAT formula to express the conflict-freeness. Since we focus
on both minimal and maximal trap spaces of multi-valued networks, we here
propose a unified method based on Answer Set Programming (ASP) [23] for
computing both maximal and minimal conflict-free siphons of a Petri net. It
is worth noting that ASP has been proved very efficient for computing trap
spaces (especially the case of many solutions) of Boolean networks [29,42,55].
The details of the proposed method (named PN-TS) shall be given as follows.

First, we show the characterization of all generic siphons of the encoded
Petri net P = (P, T,W). This characterization is the same as that shown in
Section 4 of [55]. We recall it here for making the present article self-contained.
Suppose that S is a generic siphon of P. If a place p should belong to S, then
by definition all the transitions in pred(p) must belong to succ(S). Note that
succ(S) =

⋃
p∈S succ(p). A transition t belongs to succ(S) if and only if there

is at least one place p′ in S such that p′ ∈ pred(t). Hence, for each transition
t ∈ pred(p), we can state that

p ∈ S ⇒
∨

p′∈pred(t)

p′ ∈ S. (1)

By definition, the final system fully characterizes all generic siphons of the en-
coded Petri net.

Second, to make S to be a conflict-free siphon, we need to add to the system
the rule ∧

j∈Ki

(pjvi ∈ S) = 0 (2)

24

for every node vi ∈ V . This rule represents that siphon S cannot contain all the
places corresponding to all the possible values of the same node.

Then, we translate the above characterization into the ASP L as follows. The
set A of all atoms in L is the set of places of P, i.e., A = {pjvi | vi ∈ V, j ∈ Ki}.
For each pair (p, t) where p ∈ P, t ∈ T, t ∈ pred(p), we translate the rule (1) into
the ASP rule

a1; . . . ; ak : - a.

where a ∈ A is the atom representing place p and {a1, . . . , ak} ⊆ A is the set
of atoms representing places in pred(t). The rule (2) is translated into the ASP
rule

: - pk1
vi , . . . , p

k|Ki|
vi .

for each vi ∈ V where {k1, . . . , k|Ki|} = Ki. This ASP rule guarantees that all
the places representing the same node in M never belong to the same siphon of
P, representing the conflict-freeness. Naturally, a Herbrand model (see, e.g, [23])
of L is equivalent to a conflict-free siphon of P. To guarantee that a Herbrand
model is also a stable model (an answer set), we need to add to L the |Ki| choice
rules

{pjvi}.

with j ∈ Ki for each vi ∈ V .
Now, a solution (simply an answer set) A ⊆ A of L is equivalent to a conflict-

free siphon S of P, thus a trap space m of M. The conversion from A to m is
straightforward following the mirror function in Definition 10. Formally,

m(vi) = {j | j ∈ Ki, p
j
vi ̸∈ A}

for every node vi ∈ V . Computing multiple answer sets is built into ASP solvers
and the solving collection POTASSCO [23] also features the option to find set-
inclusion maximal/minimal answer sets with respect to the set of atoms. Natu-
rally, a set-inclusion maximal answer set of L is equivalent to a maximal conflict-
free siphon of P, thus a minimal trap space of M. By using this built-in option,
we can compute all the set-inclusion maximal answer sets of L (resp. all the
minimal trap spaces of M) in one execution. For the case of minimal conflict-
free siphons, we need to exclude the special answer set ∅ (corresponding to the
empty siphon and the special trap space ε) from the solution space. To do this,
we add to the encoded ASP the following rule

p
k1
1

v1 ; . . . ; p
k1
|K1|

v1 ; . . . ; p
kn
1

vn ; . . . ; p
kn
|Kn|

vn .

where {ki1; . . . ; ki|Ki|} = Ki for every vi ∈ {v1, . . . , vn}. By using the built-in
option of ASP solvers with respect to set-inclusion minimal answer sets, we can
compute all the set-inclusion minimal answer sets of L (resp. all the maximal
trap spaces of M) in one execution. It is worth noting that the above encoding
does not requires the assumption on the domain sets (i.e., Ki = {0, . . . , |Ki|−1}),
which shows its broader applicability.

Trap spaces of multi-valued networks 25

Fixed point computation A fixed point of a multi-valued network is a spe-
cial trap space. Historically, fixed point computation is the fundamental and
the most popular analysis for biological systems modeled by multi-valued net-
works [22,47,52,1]. However, to date, such analysis remains a very useful tool in
understanding the behavior of complex biological models. On the one hand, the
full computation of complex attractors remains intractable in some cases, espe-
cially for large-scale models [49]. On the other hand, for many biological systems,
the expected long-term behavior is not cyclic such as the cell cycle and circadian
rhythms, but rather a stabilization to an observable phenotype (e.g., cell dif-
ferentiation, apoptosis, proliferation, signal transduction, protein transcription).
We can easily find several recent studies (see, e.g., [18,13,57]) using fixed points
as main validation. Furthermore, the fixed point computation plays the crucial
role in the several state-of-the-art methods for computing complex attractors of
Boolean networks under the fully asynchronous update scheme [25,56], which can
be used to compute attractors of multi-valued networks because the Van Ham
Boolean mapping preserves attractors of unitary multi-valued networks under
the fully asynchronous update scheme [15]. Hence, we here propose two possible
ways to compute all fixed points of a multi-valued network. Both rely on the
Petri net encoding of this multi-valued network.

The first one called PN-F-1 relies on the characterization of trap spaces of
M. Indeed, a fixed point s is also a trap space where |s(vi)| = 1 for every vi ∈ V .
To guarantee this constraint in the encoded ASP L that characterizes all trap
spaces of M, we add to L the following rule

k{pk1
vi ; . . . ; p

k|Ki|
vi }.

for every vi ∈ V where k = |Ki|−1 and {k1, . . . , k|Ki|} = Ki. This rule combining
with the ASP rule expressing the conflict-freeness ensures that for any answer
set and for every node vi ∈ V , there is exactly one atom corresponding to vi and
not belonging to the answer set. Now, the set of all answer sets of L is equivalent
to the set of all fixed points of M. The conversion is similar to that for the case
of trap spaces.

The second one called PN-F-2 relies on the characterization of deadlocks of
the Petri net encoding of M. Because of the characteristics of the encoding [10],
a fixed point of M is equivalent to a deadlock of its Petri net encoding P. Hence,
we here construct a new ASP LP that characterizes all deadlocks of P. First,
the set of atoms of LP is the same as that of L. Second, a marking M of P
is a deadlock if and only if there is no enabled transition at M . Formally, the
condition

∀t ∈ T, pred(t) ̸⊆ M

holds. Since pred(t) ̸⊆ M is equivalent to there is that the condition ∀p ∈
pred(t),M(p) > 0 cannot hold, we add to LP the ASP rule

: - a1; . . . ; ak.

26

for every t ∈ T where {a1, . . . , ak} is the set of atoms corresponding to the set
of places pred(t). Finally, we add to LP the ASP rule

1{pk1
vi ; . . . ; p

k|Ki|
vi }1.

for every vi ∈ V where {k1, . . . , k|Ki|} = Ki. This rule expresses the constraint
that every marking of P must satisfy that only one place corresponding to vi is
marked at the marking [10]. Now, an answer set A ⊆ A of LP is equivalent to
a deadlock M of P, thus a fixed point s of M. The conversion from A to s is
opposite to the conversion from an answer set of L to a fixed point of M (see
the method PN-F-1). Specifically,

s(vi) = j, pjvi ∈ A

for every node vi ∈ V .

5 Case study

To demonstrate the usefulness of trap-mvn, we look at existing methodologies
centred around attractors and how such methodologies can be enriched by added
focus on trap spaces. In particular, we look at the findings of [32], where a study
of a large computational model was performed using the tool BMA [5] in order to
reveal novel therapeutic targets for breast cancer.

5.1 Heterogeneity of Myc expression in breast cancer

The Myc transcription factor is one of the key coordinators in cell proliferation
and regeneration [31]. As such, oncogenic deregulations of Myc are commonplace
in many cancers. Particularly in breast cancer, Myc is typically one of the most
overexpressed genes [59].

Still, most tumours have been shown to consist of several genetically distinct
mutants, only some of which exhibit Myc overexpressions [24,27]. This hetero-
geneity can impede possible treatments, e.g., those that only target a particular
subclass of all mutants. However, it can also enable new treatments that target
the interplay or cooperation between the various mutants [32,35].

In the case of Myc-related mutations, an overexpression of Myc is linked
to super-competitive behaviour that causes the cancerous cells to outprolifer-
ate their healthy neighbours. However, the same overexpression is also linked
to greatly increased predisposition to apoptosis, meaning such cells may not be
able to survive long enough to proliferate effectively. In [32], the authors reveal
a mechanism by which such Mychigh mutants can survive in the presence of dif-
ferent, Myclow mutants. These Myclow mutants produce the Wnt1 transcription
factor that is lacking in their Mychigh counterparts, and whose absence induces
the affinity of Mychigh cells towards apoptosis.

In [32], this process is demonstrated both experimentally on in vivo mouse
models, as well as in silico on a large-scale multi-valued computational model.

Trap spaces of multi-valued networks 27

Furthermore, based on the perturbation response observed in the computational
model, the authors identify a combination of interventions on COX2 and MEK
transcription factors that together disrupt this cooperation between Myclow and
Mychigh mutants. This plausible therapeutic combination appears to be also
effective in vivo.

5.2 Computational study of Myc overexpression

To study the Myc-related effects of therapeutic interventions on breast cancer,
the authors of [32] design a computational model consisting of 72 variables, each
variable having at least 4 levels, while several important variables extend up to
7 levels. The model is based on known literature and pathway models, and was
tuned and validated using datasets from several independent studies.

The authors consider 5 variants of the final model: First, a wildtype (i.e.,
healthy) variant, then Myclow and Mychigh variants where only one type of mu-
tant is present in the tumour, and finally mix-Myclow and mix-Mychigh variants,
which describe the behaviour of the mutants when interacting with each other.
In this case, the interaction is given as an outside assumption on the two model
variants; there is no single model consisting of both Myclow and Mychigh mutants
sharing a state space.

To study the effects of possible therapeutic interventions, the authors perform
knockout perturbations on the model’s update functions for variables that can
be plausibly influenced by known therapies. In particular, the study focuses on
single and dual variable knockouts. For each such combination, the authors use
BMA to approximate the synchronous attractors of the model. They then use the
average of the Proliferation and Apoptosis variables in these attractors to asses
the effect of the therapy on the cell fate.

In the end, they identify the combination of COX2 and MEK as a plausible
therapeutic target. While this approach is certainly viable in this scenario, it has
several shortcomings that we try to address in our work:

– First, while BMA can in theory compute the exact synchronous attractors of
multi-valued models, the authors of [32] only rely on an approximate method,
as the exact algorithm can “take an unknown or large amounts of time to
find a solution”. Here, we hope to demonstrate that for trap spaces, an exact
method is efficient enough to analyze the models exhaustively.

– Second, while the focus on synchronous update scheme is to a large extent
practically motivated, there are cases where plausible model behaviour can
be missed due to the artificial synchronisation of variables [21]. Meanwhile,
trap spaces in logical models describe behaviour that is universal regard-
less of the chosen update scheme [42]. It stands to reason that without any
knowledge of the actual timings of in vivo updates, predictions based on trap
spaces should generally translate to the real world more robustly as opposed
to predictions based on a single specific update scheme.

– Third, the authors only consider the average value of Proliferation and Apop-
tosis within the computed attractors. While this is again a practical approxi-
mation, many complex consequences could be lost due to this simplification.

28

Using trap-mvn, we can obtain an exact interval for each of the desired
variables, assessing the reliability of particular outcomes.
For example, an outcome with Apoptosis = {3} is clearly different from
Apoptosis = {1, 2, 3, 4, 5}, even though the average value is the same. In
practice, even an intermittent spike in the Apoptosis value could manifest
as actual apoptosis in the real world. It is important to take this possibility
into consideration by inspecting the full range of outcomes.

5.3 Single intervention effects on trap spaces

Fig. 5: Original results obtained using BMA, comparable to Tables 1 and 2.

To compare our method to the results obtained in [32], we perform a similar
experiment: we take the 5 model variants used in the original paper and compute
the trap spaces for the respective single and dual knockout interventions. While

Trap spaces of multi-valued networks 29

Table 1: Computed trap spaces projected to the Proliferation variable.

Intervention WT Myclow mix
Myclow

mix
Mychigh Mychigh

E2F-1 0 0 0 0 0
CDK2 1 2 2 2 1
CDK4 0 2 2 3 3
Frizzled 0 0 0 3 3

Beta-Catenin 0 0 0 4 4
mdm2 0 0 . . . 2 0 . . . 2 5 4
ErbB1 0 0 . . . 1 0 5 3
Ras 0 0 . . . 1 0 5 3

Raf-1 0 0 . . . 1 0 . . . 1 5 3
Erk 0 0 . . . 1 1∗ 5 3
Mek 0 0 . . . 1 0 . . . 1 5 3

GSK3 4 4 4 5 5
pRb 6 6 6 6 6

VEGF 1 2 4 5 4
p38 1 2 . . . 4 4 5 4
Akt 0 1 . . . 4 1 . . . 4 5 4
PI3K 0 1 . . . 4 1 . . . 4 5 4
Ets-2 1 1 . . . 4 1 . . . 4 5 4
cFos 1 0 . . . 4 0 . . . 4 5 4
Elk-1 1 0 . . . 4 0 . . . 4 5 4
PEA3 1 0 . . . 4 1 . . . 4 5 4
COX2 1 0 . . . 4 1 . . . 4 5 4
EP4 1 0 . . . 4 1 . . . 4 5 4

PTEN 1 4 4 6 5
p53 1 4 4 5 5
ARF 1 4 4 5 5
p21 1 4 4 5 5
Rsk 1 4 4 5 3

PHD2 0 . . . 1 4 4 5 4
VHL 0 . . . 1 4 4 5 4

TRAP1 1 4 4 5 4
TGFR 1 4 4 5 4

TGFBeta 1 4 4 5 4
p27 1 4 4 5 4
p16 1 4 4 5 4
p15 1 4 4 5 4

Noxa 1 4 4 5 4
Mcl1 1 4 4 5 4
HIF1 1 4 4 5 4
EZH2 1 4 4 5 4

Caspase9 1 4 4 5 4
Caspase3 1 4 4 5 4

BIM 1 4 4 5 4
Bcl-xl 1 4 4 5 4
Bcl-W 1 4 4 5 4
Bcl-2 1 4 4 5 4

BAXBAK 1 4 4 5 4
A1 1 4 4 5 4

BAD 1 4 4 5 4

30

Table 2: Computed trap spaces projected to the Apoptosis variable.

Intervention WT Myclow mix
Myclow

mix
Mychigh Mychigh

Caspase9 0 0 0 0 0
BAXBAK 0 0 0 0 0
Caspase3 0 0 0 0 0
mdm2 3 1 . . . 6 1 . . . 6 5 5
PHD2 3 . . . 6 4 4 6 5
VHL 3 . . . 6 4 4 6 5
Raf-1 0 0 . . . 4 0 . . . 4 6 6
Erk 0 0 . . . 4 0∗ 6 6
Mek 0 0 . . . 4 0 . . . 4 6 6

ErbB1 0 0 . . . 6 4 6 6
Ras 0 0 . . . 6 4 6 6

Beta-Catenin 0 0 . . . 6 3 5 5
Frizzled 0 0 . . . 6 3 5 5
E2F-1 0 4 1 . . . 4 5 6
EZH2 0 4 1 . . . 4 5 6
Noxa 0 3 0 . . . 3 3 3
PTEN 0 2 1 2∗ 4
HIF1 0 1 1 3 5
BAD 0 3 0 . . . 3 3 5
Ets-2 0 0 . . . 4 0 . . . 4 3 5
cFos 0 0 . . . 4 0 . . . 4 3 5
Elk-1 0 0 . . . 4 0 . . . 4 3 5
pRb 3 4∗ 1 . . . 4 3 5

GSK3 1 4 1 . . . 4 3 3 . . . 6
Akt 2 2 . . . 6 2 . . . 3 3 5
PI3K 2 2 . . . 6 2 . . . 3 3 5
Mcl1 1 4 2 . . . 4 4 5
Bcl-xl 1 4 2 . . . 4 4 5
Bcl-W 1 4 2 . . . 4 4 5

A1 1 4 2 . . . 4 4 5
Bcl-2 1 4 2 . . . 4 4 5
p38 0 4 4 3 5

VEGF 0 4 4 3 5
PEA3 0 0 . . . 6 0 . . . 6 3 5
COX2 0 0 . . . 6 0 . . . 6 3 5
EP4 0 0 . . . 6 0 . . . 6 3 5
ARF 0 4 1 . . . 4 1 . . . 4 6
p53 0 4 1 . . . 4 1 . . . 4 6

CDK2 0 4 1 . . . 4 3 6
Rsk 0 4 1 . . . 4 3 6

TRAP1 0 4 1 . . . 4 3 5
TGFR 0 4 1 . . . 4 3 5

TGFBeta 0 4 1 . . . 4 3 5
p27 0 4 1 . . . 4 3 5
p21 0 4 1 . . . 4 3 5
p16 0 4 1 . . . 4 3 5
p15 0 4 1 . . . 4 3 5
BIM 0 4 1 . . . 4 3 5

CDK4 0 4 1 . . . 4 3 5

Trap spaces of multi-valued networks 31

the results are in many aspects comparable to those obtained with BMA, in some
cases, they paint a much more complete picture of the model’s behaviour.

A knockout of a network variable is implemented by replacing its update
function with a constant 0 function. Hence the knocked-out variable eventually
stabilises at this value.

For the case of a single knockout, we prepared two tables (Table 1 and Ta-
ble 2) that are directly comparable to Figure S5 from [32] (which is reproduced
here as Figure 5). In these tables, we use the same colours as [32] to depict the
resulting intensity of each variable. Note that unless states otherwise, our results
are in line with the results obtained by BMA, i.e., we agree on stable values and
the average attractor values obtained by BMA lie within our trap space interval.

Interpreting interval results Clearly, there are many cases where a pertur-
bation causes a non-trivial trap space to appear, resulting in an interval instead
of a fixed value for one of the considered output variables. Knowledge of these
intervals is often crucial when interpreting the effectiveness of perturbations.

For example, take the case of Apoptosis and knockouts of Mcl1 and COX2.
If we only considered the average value of Apoptosis, these two perturbations
are equal for model mix-Myclow (average value is 3). However, under Mcl1, the
admissible interval is [2, 4], while for COX2, it is [0, 6]. This means that under
the Mcl1 intervention, we are guaranteed to observe Apoptosis value of at least
2, whereas we have no such expectation for COX2 (even though the “best case”
outcome is higher; 6 > 4).

Exact vs. approximate results There are four instances (marked with bold
and ∗) where our method computed a tighter result than BMA. In all cases, this
tighter result is actually quite different from the average value obtained through
BMA. For example, in the case of Apoptosis and the Erk knockout, we computed
value 0 whereas BMA reports an average value 2. We attribute this to the fact
that in these experiments, BMA operates using an approximate algorithm. This
further strengthens the case for using the exact method, especially since in this
case, the complete results were obtained in just several hours.

5.4 Dual knockouts and reliable vs. opportunistic treatments

While for single knockouts, the number of possible interventions is relatively
small and can be conceivably compared by hand, to pick viable treatments from
dual knockouts, we need a more methodic approach. Accounting for the presence
of value intervals, when comparing interventions, we consider two scenarios that
we denote reliable and opportunistic interventions.

Overall, we assign a score to each perturbation, given as the sum of Apoptosis
values across both mix-Mychigh and mix-Myclow clones, minus the sum of Prolif-
eration values across the same cells. Intuitively, our aim is to maximize Apoptosis
while also minimizing Proliferation. Based on other real-world constraints, we

32

Table 3: Best and worst dual interventions (out of 995 tested) based on the
average of their reliability and opportunity scores.

Score Apoptosis Proliferation

Intervention Relia-
bility

Oppor-
tunity WT mix

Myclow
mix

Mychigh
mix

Myclow
mix

Mychigh

E2F-1 + Ras 10 10 0 4 6 0 0
ErbB1 + E2F-1 10 10 0 4 6 0 0

Beta-Catenin + E2F-1 9 9 0 3 6 0 0
Frizzled + E2F-1 9 9 0 3 6 0 0

p38 + E2F-1 9 9 0 4 5 0 0
VEGF + E2F-1 9 9 0 4 5 0 0
E2F-1 + Rsk 7 10 0 1 . . . 4 6 0 0
A1 + E2F-1 7 9 1 2 . . . 4 5 0 0

Bcl-2 + E2F-1 7 9 1 2 . . . 4 5 0 0
Bcl-W + E2F-1 7 9 1 2 . . . 4 5 0 0

. . .

. . .
VEGF + Caspase9 -9 -9 0 0 0 4 5
VHL + BAXBAK -9 -9 0 0 0 4 5
VHL + Caspase3 -9 -9 0 0 0 4 5
VHL + Caspase9 -9 -9 0 0 0 4 5

PTEN + BAXBAK -10 -10 0 0 0 4 6
PTEN + Caspase3 -10 -10 0 0 0 4 6
PTEN + Caspase9 -10 -10 0 0 0 4 6
BAXBAK + pRb -12 -12 0 0 0 6 6
Caspase3 + pRb -12 -12 0 0 0 6 6
Caspase9 + pRb -12 -12 0 0 0 6 6

Trap spaces of multi-valued networks 33

could use a different scoring function to, e.g., prioritize only Apoptosis (as did
the authors of [32]).

Here, the reliable score is obtained by taking the lower bound on Apoptosis
and upper bound on Proliferation. That is, we consider the “worst case” scenario
admitted by the trap space. Meanwhile, the opportunistic score is computed
based on inverse bounds (upper for Apoptosis, lower for Proliferation), which
corresponds to the “best case” admitted by the model.

We then proceed to compute these metrics for every admissible dual-knockout
perturbation (admissibility is judged based on druggability, as investigated in [32]).
From these perturbations, we exclude cases where the perturbation causes oppor-
tunistic Apoptosis values in wildtype (i.e., healthy) cells higher than 3, as these
could cause damage even to healthy cells. This leaves unique 995 perturbations.

Best and worst dual knockouts For the purposes of presentation, we sort
the perturbations by the average of their reliability and opportunity scores. The
individual scores are then defined as follows:

M = { mix-Myclow,mix-Mychigh }

rel(I) =
∑
m∈M

minI(Apop.,m)−
∑
m∈M

maxI(Prolif.,m)

opp(I) =
∑
m∈M

maxI(Apop.,m)−
∑
m∈M

minI(Prolif.,m)

Here, minI(V,m) and maxI(V,m) denote the lowest and highest value of the vari-
able V for the model variant m under intervention I. In our case, Apoptosis con-
tributes positively to the overall score (the treatment should maximise Apoptosis),
while Proliferation contributes to the score negatively (the treatment should
minimise Proliferation). Even though these scores are tailored for this par-
ticular model and its phenotypes, the principle is easily transferable to other
models as well.

The ten best and worst perturbations are show in Table 3. As we can see,
some of the best perturbations admit a non-trivial trap space for the mix-Myclow
model variant. However, even in this case, the reliability and opportunity scores
are not vastly different.

Note that the COX2 + MEK perturbation chosen in [32] has a reliability
and opportunity score equal to 5, which means it would occupy places 65-149
in Table 3 (there are 84 perturbations with the same scores). While this is not
among the best scores, it is still better than 85-93% of perturbations. Further-
more, it should be noted that our screening for viable perturbations is rather
rudimentary: in practice, some of the top perturbations might be ruled out due
to factors other than the Apoptosis score of the wildtype cells (e.g., other side
effects of the perturbation not captured by this model).

Distance between reliability and opportunity scores Table 3 raises a nat-
ural question: How different are the reliability and opportunity scores across all

34

0 1 2 3 4 5 6 7 8 9 10 11

0

100

200

300

400

Score difference: opp(I)− rel(I)

N
o.

of
in

te
rv

en
ti

on
s

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10

0

2

4

6

8

10

Average score: (rel(I) + opp(I))/2

Sc
or

e
di

ffe
re

nc
e

Fig. 6: Histogram of score difference values (top) and their plot in relation to the
average score (bottom).

Trap spaces of multi-valued networks 35

tested perturbations? To answer this question, we compute the distance between
the reliability and opportunity scores of each perturbation, and plot the results
as a histogram in Figure 6. As we can see, roughly half of the interventions
(439/995) have the same reliability and opportunity scores.

However, for a significant portion of interventions, their opportunity and
reliability scores differ substantially. In particular, for 463/995 interventions, this
difference is three or more points. In these cases, it is not advisable to only rely
on the average values of Apoptosis and Proliferation. Here, the model admits a
wide range of behaviour and this uncertainty has to be taken into account when
assessing how the perturbation can manifest in the real world.

Furthermore, as demonstrated in Figure 6, even though the scores are equiv-
alent for the majority of the interventions, even very high differences (e.g., > 9)
still appear in the dataset. Furthermore, we also plot the distribution of score
differences with respect to the average score. We can see that even viable in-
terventions (e.g., average > 4) can admit a high variability between the reliable
and opportunistic metrics (up to 6).

6 Performance evaluation

In the literature, to the best of our knowledge, no work has been done so far on
computing trap spaces of MVNs due to the lack of definition as well as appro-
priate tools. There is limited work concerning fixed-points available in [40,41,1].

To show the scalability of our approach (implemented in a Python tool called
trap-mvn2), we collected several MVNs based on the known biological networks
from the literature. All these models come from two sources: the BBM repository3

(using the SBML-qual [7] format) and the BMA repository [5]. The size of these
models is non-trivial and most of them have never been fully analysed. See
Table 4 for the breakdown of structural properties of these models.

Experiment setup: We ran trap-mvn and the other existing tools on the
test networks, measuring the running time. To solve the ASP problems, we used
the same ASP solver Clingo [23] and the same configuration as that used by the
other ASP-based methods (mpbn, AN-ASP, and Trappist).

Unless stated otherwise, all measured times represent an average over three
runs. We have not observed significant differences between individual runs, hence
we omit detailed analysis of runtime variance. Similarly, in cases where a method
fails, it always fails consistently across all five runs.

All experiments ran on a desktop machine with Ryzen 5800X CPU and
128GB of RAM, Ubuntu 22.04 LTS. However, note that all tested programs
only utilize one CPU core and RAM usage never exceeded 32GB.

Model formats: Since trap-mvn is the only tested tool which supports both
SBML and BMA formats, all BMA models have been first translated to SBML (using
trap-mvn). This translation time does not count towards the total runtime, since
it would have been the same for all tools. Furthermore, for tools that operate
2 https://github.com/giang-trinh/trap-mvn
3 https://github.com/sybila/biodivine-boolean-models

https://github.com/giang-trinh/trap-mvn
https://github.com/sybila/biodivine-boolean-models

36

on the Boolean network created using Van Ham encoding, the translation was
facilitated by bioLQM [7] (into the .bnet format). However, this encoding step
is counted towards the total tool runtime, because it is only required by some
tools. Other internal encoding steps that are specific to each tool (such as the
Petri net encoding within trap-mvn) always count towards the tool’s runtime.

Table 4: Structural properties of the selected real-world models. First column
indicates the source of the model (BBM or BMA). Column “name” shows a short
name, including a model ID for BBM models. Columns n and k denote the num-
ber of network nodes and the sum of their domain sizes, respectively. Columns
|TM|, |TU |, and |TN | denote the number of transitions of the encoded Petri net
for the general counterpart, unitary counterpart, and the Van Ham Boolean
network of the unitary counterpart of each model, respectively.

Model name n k |TM| |TU | |TN |

BBM BUDDING YEAST (146) 32 82 2643 2370 2775
BBM AGS CELL FATE (148) 77 160 268 252 264
BBM TCR METABOLISM (151) 111 244 951 758 862
BBM TH1-TH2 DIFFER. (155) 65 136 238 224 235
BBM TH DIFFER. (157) 101 204 343 337 403
BBM YEAST CORE (159) 27 66 1558 1526 2132
BBM IL17 DIFFER. (160) 82 174 338 324 333
BBM MONOCYTES DIF. (161) 94 190 390 387 363
BBM MESODERM SPEC. (167) 48 105 327 227 230
BBM SEA URCHIN (175) 30 71 149 124 135
BBM MYELOFIBR. ENV. (176) 40 89 226 207 209
BBM MAST CELL (178) 47 95 112 112 115
BBM MICROENV. CONTROL (179) 51 107 275 254 304
BBM ALT. IN BLADDER (183) 30 65 175 152 161
BBM BRAF TREATMENT (190) 33 70 110 103 110
BBM SEGMENT POLARITY (192) 72 174 462 408 414
BBM VULVAR PRECURSOR (194) 88 195 360 329 349
BBM CTLA4 CHECKPOINT (195) 216 434 664 663 705
BBM LYMPHOCYTE SPEC. (196) 56 117 400 385 426
BBM ANTERIOR POST. (197) 28 84 644 454 504

BMA MYC IN-VITRO 75 260 28403 10881 13331
BMA MYC IN-VIVO 72 251 28323 10815 13296
BMA METABOLISM 91 446 46984 15744 12739
BMA LEUKAEMIA 54 161 1217 739 624
BMA SKIN MODEL 75 375 3060 2236 2528
BMA VPC 85 254 820 684 719

Trap spaces of multi-valued networks 37

6.1 Minimal trap spaces

First, we evaluate trap-mvn on the problem of computing minimal trap spaces.
We’ve shown (Section 3.2) that the unitary trap spaces of an MVN are equivalent
to those of a Boolean network obtained using the Van Ham encoding [26]. As
such, to evaluate the performance of trap-mvn on unitary MVNs, we can use
existing state-of-the-art tools for computation of minimal trap spaces in BNs.

For this comparison, we selected mpbn [42] (version 1.7) and trappist [55].
We did not consider pyboolnet [30], because it has been shown in [55] that
trappist and mpbn together outperform pyboolnet completely. For the case of
general MVNs, there are no comparable tools that we are aware of.

We consider two related metrics of tool performance: time to first result (i.e.
the time necessary to compute some minimal trap space), and time to all results
(i.e. the time necessary to compute all minimal trap spaces). We configure each
tool to only return the total number of minimal trap spaces. This eliminates the
time necessary to actually print all results, which can be significant for some
networks, but which can also vary based on factors like size of representation
and storage speed (which are not relevant for our comparison).

Note that we separately compared the unitary trap spaces computed by all
three methods and verified that they are the indeed equivalent. Also note that
while the number of computed trap spaces is the same for the general and the
unitary case, the actual computed trap spaces are often different. That is, the
exact intervals of fixed variables within the computed trap spaces often differ.

Tables 5 and 6 show the full experimental results, including the number of
all computed trap spaces and relative speed-up of trap-mvn compared to the
relevant methods. For each competing method, we also compute the average
speed-up, weighted by the runtime of the competing method. This means that
benchmarks contribute to the average speed-up proportionally to their runtime
(“harder” benchmarks have proportionally higher weight).

These results are visualised in Figures 7 and 8. Specifically, Figure 7 shows
the relative times as a scatter plot. Here, points below the diagonal represent
benchmarks where trap-mvn outperforms the competing tool. Note that the
timescales in Figure 7 are logarithmic, hence even a relatively minor improvement
often represents a significant speed-up. The absolute speed-ups are then analysed
in Figure 8. Note that the DNF results are not included in this analysis.

Overall, we observe that trap-mvn significantly outperforms both trappist
and mpbn. When enumerating all minimal trap spaces, trap-mvn is ∼ 3× faster
than trappist (using a weighted average), and ∼ 58× faster than MPBN. Further-
more, note that MPBN could not finish large portion of the benchmarks. Finally,
the time to compute the first result also enjoys similar average speed-up.

Runtime impact of ASP query density Let us now discuss the factors
which contribute to the running time of each method. All three methods use
ASP to some degree. However, MPBN is only applicable to locally monotonic
models (21/26 of tested models). MPBN performs simplification of the Boolean
functions, which is required for checking the local monotonicity and further

38

0.1s 1s 5s 30s

0.1s

1s

5s

30s

trappist • / MPBN ▲
Time to first result (log)

tr
ap

-m
vn

(l
og

)

0.1s 1s 5s 30s 5min 1h 24h

0.1s

1s
5s

30s

5min

1h

24h

trappist • / MPBN ▲
Time to all results (log)

tr
ap

-m
vn

(l
og

)

Fig. 7: Runtime comparison between trap-mvn and trappist, resp. MPBN, in
terms of time to first result (left) and time to all results (right). Points at the
right-most edge of the graph correspond to DNF results. Note that in both plots,
the time scale is logarithmic.

1x 5x 10x 15x

Time to all results
(speedup)

Time to first result
(speedup)

Relative speed-up
(trap-mvn vs. trappist)

1x 20x 40x 60x 80x 100x
Relative speed-up

(trap-mvn vs. MPBN)

Fig. 8: Box plot summary of the relative speed-up in runtime of trap-mvn com-
pared to trappist (left), res. MPBN (right).

Trap spaces of multi-valued networks 39

simplifies the subsequent ASP query. However, this simplification step appears
to be the bottleneck of the method, as most DNF results for MPBN happen due to
this step. As such, we focus on trappist for the rest of this section.

Aside from the absolute number of solutions, the practical complexity of an
ASP query is affected by its number of atoms and its density, i.e. the ratio
between the number of ASP rules and atoms. For trap-mvn and trappist, the
number of ASP atoms is equal to the number of Petri net places. The number
of ASP rules is then equal to the number of Petri net transitions. For a general
(resp. unitary) multi-valued network, its encoded Petri net has k places and
|TM| (resp. |TU |) transitions (Table 4 presents these values for our benchmark
models). For the Van Ham encoded Boolean network, its encoded Petri net has
2× (k − n) places and |TN | transitions.

5 15 25 35
0.1ms

1ms

10ms

0.1s

1s

ASP query density (SBML)
trap-mvn: general • / unitary ▲

trappist ■

T
im

e
pe

r
so

lu
ti

on
(l

og
)

5 25 50 75 100 125
0.1ms

1ms

10ms

0.1s

ASP query density (BMA)
trap-mvn: general • / unitary ▲

trappist ■

Fig. 9: Relationship between ASP query density and average time required to
compute a single solution. Note that the time scale is logarithmic.

To study the relationship between query density and runtime, let us consider
the following setting: As the relevant metric, we consider the time necessary
to compute all results for non-trivial problems. We consider the problem to be
non-trivial when (a) the runtime is more than one second, or (b) the number of
trap spaces is more than 1000. For each such case, we compute the average time
required to compute one solution (i.e. runtime divided by the number of trap
spaces). This normalizes the runtime with respect to the solution count.

Finally, we observe that the query density of the BMA models appears to be
generally higher than that of the SBML models, even for models with comparable
runtime. This difference can be to some extent explained by the type of func-
tion representation employed by BMA and the subsequent differences in Petri net

40

encoding method. As such, we separate the results based on the initial model
format. The results of the analysis are shown in Figure 9.

Let us note that the sample size for this analysis is not very large (12 models,
3 methods), and as such the conclusions that we can draw are limited as well.
Nevertheless, Figure 9 reveals some clear trends among the employed methods.

First, all but one non-trivial model with small density (<5) are clustered
in the <1ms region of the graph, while higher-density models generally require
more time to produce a solution. In the SBML case, this manifests as a cluster of
models in the 25-35 density range with time per solution close to one second. For
the BMA models, the trend is more gradual and the results are clearly influenced
by the considered method. However, if we focus on individual methods, we see
that an increase in density is always accompanied by increased runtime.

To conclude, query density is clearly not the only indicator of ASP problem
complexity. However, assuming we control for other relevant factors (solution
count, tool/method, update scheme, model type, etc.), query density appears to
be a relevant metric for comparing the complexity of two minimal trap space
computation problems.

Runtime of trap-mvn in general and unitary cases Let us to discuss the
runtime complexity of the general and unitary cases. It is quite clear to see from
Tables 5 and 6 that trap-mvn needs more time for the general case than for
the unitary case on every multi-valued network. The reason might be that the
encoded Petri nets of the general and unitary MVNs have the same number of
places but the former has more transitions (consequently larger density) than
the latter has. This is clearly shown in Table 4. Since the other relevant factors
are the same for the general and unitary multi-valued networks (the number of
solutions, the tool considered, the number of places of the encoded Petri net,
etc.), the difference in density appears to be the main metric for indicating the
difference in runtime of trap-mvn in the general and unitary cases.

6.2 Maximal trap spaces

The experimental setting for the case of maximal trap spaces is similar to those
for the case of minimal trap spaces. However, note that the Van Ham Boolean
encoding does not preserve maximal trap spaces of neither general nor uni-
tary MVNs. Hence, we only evaluate trap-mvn. Furthermore, since the absolute
number of maximal trap spaces is typically small, we only measure the case of
computing all results.

Table 7 shows the experimental results. Here, we see that the total number
of maximal trap spaces is indeed small, even for networks where the number of
minimal trap spaces is large. Due to this fact, the times required to compute all
maximal trap spaces are comparable to the times needed to compute a single
minimal trap space. Furthermore, we can observe that (as opposed to the case
of minimal trap spaces), there are nine models where the number of trap spaces
differs between the general and unitary interpretation of the model. Overall,
trap-mvn performs well when enumerating maximal trap spaces.

Trap spaces of multi-valued networks 41

6.3 Fixed points

Finally, we compare the runtime of trap-mvn on the problem of network fixed-
points, which can be understood as a specialized notion of a minimal trap space
where all variables are fixed. Fixed points are shared between all update schemes,
hence they are the same for general, unitary and also Booleanised networks (see
Section 3.2). Hence, we only consider unitary multi-valued networks hereafter.

In trap-mvn, we implement two methods for computing fixed-points: The
first uses characterisation through PN siphons (the same as minimal trap spaces),
the second uses characterisation through PN deadlocks (see Section 4.2). There
are also three existing tools that support direct computation of fixed points in
multi-valued networks: GINsim [40], Pint [41], and AN-ASP [1]. Out of these, we
select AN-ASP, as [1] shows it to be more efficient than GINsim and Pint.

Note that AN-ASP requires an automata network as input. Therefore, we use
bioLQM [7] to convert an SBML multi-valued network into an equivalent automata
network. This conversion counts towards the total runtime of AN-ASP.

In addition, we can also consider tools that operate on multi-valued networks
Booleanised through the Van Ham encoding (see Theorem 4). Here, we again
compare to trappist [55] and MPBN [42] as state of the art methods. Note that,
similar to trap-mvn, trappist also implements two fixed-point computation
methods based on PN siphons and deadlocks.

In Section 6.1, we saw that the time to first result appears to be a suitable
metric to test method performance (i.e. speed-up results were similar for time
to first result and time to all results). As such, to simplify the tool comparison,
we only consider time to first result in our fixed point analysis.

Table 8 shows the experimental results. Note that MPBN times out on the
same networks as when testing the minimum trap spaces, due to the previously
outlined bottleneck in model simplification. Overall, its running time is compa-
rable to the case of minimum trap spaces. As expected, the running times of the
siphon-based methods of trap-mvn and trappist are also comparable to the
case of minimal trap spaces. However, the deadlock-based methods are in all in-
stances faster than the siphon-based methods. In fact, using the same weighted
average metric as before, the deadlock method of trap-mvn is ∼ 2.6× faster
than the siphon method. Comparing the deadlock-based methods of trap-mvn
and trappist, we see that on average, the trap-mvn method is faster, but on
hard benchmarks, the improvement is not significant.

However, observe that AN-ASP outperforms both trap-mvn and trappist (∼
1.3× weighted average speed-up). This is to be expected, as AN-ASP is optimised
solely for fixed-point computation, and it highlights the need for specialised
methods for similar but related problems.

7 Conclusion

In this article, we have generalized the concept of trap spaces in Boolean net-
works to that in multi-valued networks. Then, we have explored and proved

42

several properties of trap spaces in multi-valued networks as well as shown the
theoretical applications of trap spaces in the analysis and control of multi-valued
networks. Next, we have made a connection between trap spaces of a multi-valued
network and siphons of its Petri net encoding. A very first theoretical application
of this connection is to provide another way to prove the independence of trap
spaces of a multi-valued network to the update scheme. We believe that this
connection also provides a useful tool for exploring and proving further theoret-
ical results of trap spaces in multi-valued networks. In computational aspects,
from this connection, we have proposed and implemented a new method based
on answer set programming [23] for computing different types of trap spaces of a
multi-valued network and a special method for computing fixed points. We have
shown the applicability of our methods via a realistic case study and evaluated
their time efficiency by conducting experiments on real-world models collected
from the literature.

The experimental results show that our methods scale well with the network
size and in particular they can handle large-scale models. The indirect approach
(i.e., building a Boolean mapping of a multi-valued network and applying the
methods developed for Boolean networks) is only applicable for the case of fixed
points and the case of minimal trap spaces of unitary multi-valued networks. For
these cases, the direct approach (i.e., our proposed methods) outperforms the
indirect one, which confirms our expectation about direct and efficient analysis
methods for multi-valued networks.

In addition, there are possibly other methods for computing minimal/maximal
conflict-free siphons in Petri nets, like SAT/MaxSAT approaches [39]. Although
these approaches do not directly support the minimal/maximal conflict-free
siphon computation now, we plan to investigate them in the future. They could
replace our ASP method if they outperform it. However, the current method ap-
pears to already perform very well even on the most large and complex models
we have considered.

Trap spaces only capture static behavior of a multi-valued network, whereas
attractors capture the more complex dynamical behavior. Hence, we plan to at-
tack the attractor detection in multi-valued networks as well as explore more
theoretical results that can contribute to the theory of multi-valued networks.
Exploiting the relation between attractors and trap spaces of multi-valued net-
works is a potentially promising solution.

Finally, we plan to develop efficient control methods for biological systems
modeled by multi-valued networks because the control problem is crucial in
systems biology and can be seen as the sequel of the trap space or attractor
analysis [19]. Extending the trap spaces-based methods [19,45,12] for Boolean
networks is a potential direction. Furthermore, we also want to apply our devel-
oped methods to specific biological problems, which requires a closed collabora-
tion with biologists.

Trap spaces of multi-valued networks 43

References

1. Abdallah, E.B., Folschette, M., Roux, O.F., Magnin, M.: ASP-based method for
the enumeration of attractors in non-deterministic synchronous and asynchronous
multi-valued networks. Algorithms Mol. Biol. 12(1), 20:1–20:23 (2017)

2. Akutsu, T.: Algorithms for analysis, inference, and control of Boolean networks.
World Scientific (2018)

3. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,
Somenzi, F.: Algebric decision diagrams and their applications. Formal Methods
Syst. Des. 10(2), 171–206 (1997)

4. Basser-Ravitz, E., Darbar, A., Chifman, J.: Cyclic attractors of nonexpanding q-
ary networks. J. Math. Biol. 85(5), 1–31 (Oct 2022)

5. Benque, D., Bourton, S., Cockerton, C., Cook, B., Fisher, J., Ishtiaq, S., Piter-
man, N., Taylor, A., Vardi, M.Y.: BMA: Visual tool for modeling and analyzing
biological networks. In: Computer Aided Verification, pp. 686–692. Springer Berlin
Heidelberg (2012)

6. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

7. Chaouiya, C., Bérenguier, D., Keating, S.M., Naldi, A., et al.: SBML qualitative
models: a model representation format and infrastructure to foster interactions
between qualitative modelling formalisms and tools. BMC Syst. Biol. 7, 135 (2013)

8. Chaouiya, C., Naldi, A., Remy, E., Thieffry, D.: Petri net representation of multi-
valued logical regulatory graphs. Nat. Comput. 10(2), 727–750 (2011)

9. Chaouiya, C., Remy, E., Ruet, P., Thieffry, D.: Qualitative modelling of genetic
networks: From logical regulatory graphs to standard Petri nets. In: Applications
and Theory of Petri Nets 2004, 25th International Conference, ICATPN 2004,
Bologna, Italy, June 21-25, 2004, Proceedings. Lecture Notes in Computer Science,
vol. 3099, pp. 137–156. Springer (2004)

10. Chatain, T., Haar, S., Jezequel, L., Paulevé, L., Schwoon, S.: Characterization
of reachable attractors using Petri net unfoldings. In: Computational Methods in
Systems Biology - 12th International Conference, CMSB 2014, Manchester, UK,
November 17-19, 2014, Proceedings. Lecture Notes in Computer Science, vol. 8859,
pp. 129–142. Springer (2014)

11. Chifman, J., Arat, S., Deng, Z., Lemler, E., Pino, J.C., Harris, L.A., Kochen, M.A.,
Lopez, C.F., Akman, S.A., Torti, F.M., Torti, S.V., Laubenbacher, R.: Activated
oncogenic pathway modifies iron network in breast epithelial cells: A dynamic
modeling perspective. PLoS Comput. Biol. 13(2), e1005352 (Feb 2017)

12. Cifuentes-Fontanals, L., Tonello, E., Siebert, H.: Node and edge control strategy
identification via trap spaces in Boolean networks. arXiv preprint (2022)

13. Corral-Jara, K.F., Chauvin, C., Abou-Jaoudé, W., Grandclaudon, M., Naldi, A.,
Soumelis, V., Thieffry, D.: Interplay between SMAD2 and STAT5A is a critical
determinant of IL-17A/IL-17F differential expression. Mol. Biomed. 2(1), 1–16
(2021)

14. Delaplace, F., Ivanov, S.: Bisimilar Booleanization of multivalued networks.
Biosyst. 197, 104205 (2020)

15. Didier, G., Remy, E., Chaouiya, C.: Mapping multivalued onto Boolean dynamics.
J. Theor. Biol. 270(1), 177–184 (Feb 2011)

16. Dinh, K., Wang, Q.: A probabilistic Boolean model on hair follicle cell fate regu-
lation by TGF-β. Biophys. J. 121(13), 2638–2652 (Jul 2022). https://doi.org/10.
1016/j.bpj.2022.05.035

https://doi.org/10.1016/j.bpj.2022.05.035
https://doi.org/10.1016/j.bpj.2022.05.035
https://doi.org/10.1016/j.bpj.2022.05.035
https://doi.org/10.1016/j.bpj.2022.05.035

44

17. Fauré, A., Kaji, S.: A circuit-preserving mapping from multilevel to Boolean dy-
namics. J. Theor. Biol. 440, 71–79 (Mar 2018)

18. Floc’Hlay, S., Molina, M.D., Hernandez, C., Haillot, E., Thomas-Chollier, M., Lep-
age, T., Thieffry, D.: Deciphering and modelling the TGF-β signalling interplays
specifying the dorsal-ventral axis of the sea urchin embryo. Dev. 148(2), dev189944
(2021). https://doi.org/10.1242/dev.189944

19. Fontanals, L.C., Tonello, E., Siebert, H.: Control strategy identification via trap
spaces in Boolean networks. In: Computational Methods in Systems Biology -
18th International Conference, CMSB 2020, Konstanz, Germany, September 23-
25, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12314, pp. 159–175.
Springer (2020)

20. Gan, X., Albert, R.: General method to find the attractors of discrete dynamic
models of biological systems. Phys. Rev. E 97, 042308–042325 (Apr 2018)

21. Garg, A., Cara, A.D., Xenarios, I., Mendoza, L., Micheli, G.D.: Synchronous versus
asynchronous modeling of gene regulatory networks. Bioinform. 24(17), 1917–1925
(2008)

22. Garg, A., Mendoza, L., Xenarios, I., DeMicheli, G.: Modeling of multiple valued
gene regulatory networks. In: 2007 29th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society. pp. 1398–1404. IEEE (Aug
2007)

23. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The Potsdam answer set solving collection. AI Commun. 24(2), 107–
124 (2011)

24. Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E.,
Martinez, P., Matthews, N., Stewart, A., Tarpey, P., et al.: Intratumor heterogene-
ity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med.
366, 883–892 (2012)

25. Giang, T.V., Akutsu, T., Hiraishi, K.: An FVS-based approach to attractor detec-
tion in asynchronous random Boolean networks. IEEE ACM Trans. Comput. Biol.
Bioinform. 19(2), 806–818 (2022). https://doi.org/10.1109/TCBB.2020.3028862

26. Ham, P.V.: How to deal with variables with more than two levels. In: Lecture Notes
in Biomathematics, pp. 326–343. Springer Berlin Heidelberg (1979)

27. Heselmeyer-Haddad, K., Garcia, L.Y.B., Bradley, A., Ortiz-Melendez, C., Lee,
W.J., Christensen, R., Prindiville, S.A., Calzone, K.A., Soballe, P.W., Hu, Y.,
et al.: Single-cell genetic analysis of ductal carcinoma in situ and invasive breast
cancer reveals enormous tumor heterogeneity yet conserved genomic imbalances
and gain of myc during progression. Am. J. Pathol. 181(5), 1807–1822 (2012)

28. Kitano, H.: Cancer as a robust system: implications for anticancer therapy. Nat.
Rev. Cancer 4(3), 227–235 (Mar 2004). https://doi.org/10.1038/nrc1300

29. Klarner, H., Bockmayr, A., Siebert, H.: Computing maximal and minimal trap
spaces of Boolean networks. Nat. Comput. 14(4), 535–544 (2015)

30. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the gener-
ation, analysis and visualization of Boolean networks. Bioinform. 33(5), 770–772
(2017)

31. Kortlever, R.M., Sodir, N.M., Wilson, C.H., Burkhart, D.L., Pellegrinet, L.,
Swigart, L.B., Littlewood, T.D., Evan, G.I.: Myc cooperates with Ras by pro-
gramming inflammation and immune suppression. Cell 171(6), 1301–1315 (2017)

32. Kreuzaler, P., Clarke, M.A., Brown, E.J., Wilson, C.H., Kortlever, R.M., Piter-
man, N., Littlewood, T., Evan, G.I., Fisher, J.: Heterogeneity of Myc expression in
breast cancer exposes pharmacological vulnerabilities revealed through executable
mechanistic modeling. Proc. Natl. Acad. Sci. U.S.A. 116(44), 22399–22408 (2019)

https://doi.org/10.1242/dev.189944
https://doi.org/10.1242/dev.189944
https://doi.org/10.1109/TCBB.2020.3028862
https://doi.org/10.1109/TCBB.2020.3028862
https://doi.org/10.1038/nrc1300
https://doi.org/10.1038/nrc1300

Trap spaces of multi-valued networks 45

33. Liu, G., Barkaoui, K.: A survey of siphons in Petri nets. Inf. Sci. 363, 198–220
(2016)

34. Lodish, H.F., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J.,
et al.: Molecular cell biology, vol. 4. WH Freeman New York (2000)

35. Marusyk, A., Tabassum, D.P., Altrock, P.M., Almendro, V., Michor, F., Polyak, K.:
Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity.
Nature 514(7520), 54–58 (2014)

36. Mendik, P., Kerestély, M., Kamp, S., Deritei, D., Kunšič, N., Vassy, Z., Cser-
mely, P., Veres, D.V.: Translocating proteins compartment-specifically alter the
fate of epithelial-mesenchymal transition in a compartmentalized Boolean net-
work model. npj Syst. Biol. Appl. 8(1), 19 (Jun 2022). https://doi.org/10.1038/
s41540-022-00228-7, https://doi.org/10.1038/s41540-022-00228-7

37. Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77(4),
541–580 (Apr 1989)

38. Mushthofa, M., Schockaert, S., Hung, L., Marchal, K., Cock, M.D.: Modeling multi-
valued biological interaction networks using fuzzy answer set programming. Fuzzy
Sets Syst. 345, 63–82 (2018)

39. Nabli, F., Martinez, T., Fages, F., Soliman, S.: On enumerating minimal siphons
in Petri nets using CLP and SAT solvers: theoretical and practical complexity.
Constraints An Int. J. 21(2), 251–276 (2016)

40. Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation
and analysis of logical models of genetic networks. In: Computational Methods
in Systems Biology, International Conference, CMSB 2007, Edinburgh, Scotland,
September 20-21, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4695,
pp. 233–247. Springer (2007)

41. Paulevé, L.: Pint: A static analyzer for transient dynamics of qualitative networks
with IPython interface. In: Computational Methods in Systems Biology - 15th
International Conference, CMSB 2017, Darmstadt, Germany, September 27-29,
2017, Proceedings. Lecture Notes in Computer Science, vol. 10545, pp. 309–316.
Springer (2017)

42. Paulevé, L., Kolčák, J., Chatain, T., Haar, S.: Reconciling qualitative, abstract,
and scalable modeling of biological networks. Nat. Commun. 11(1), 1–7 (Aug
2020)

43. Remy, E., Rebouissou, S., Chaouiya, C., Zinovyev, A., Radvanyi, F., Calzone, L.:
A modeling approach to explain mutually exclusive and co-occurring genetic alter-
ations in bladder tumorigenesis. Cancer Research 75(19), 4042–4052 (Sep 2015)

44. Richard, A.: Negative circuits and sustained oscillations in asynchronous automata
networks. Adv. Appl. Math. 44(4), 378–392 (2010)

45. Rozum, J.C., Deritei, D., Park, K.H., Gómez Tejeda Zañudo, J., Albert, R.: pys-
tablemotifs: Python library for attractor identification and control in Boolean net-
works. Bioinform. 38(5), 1465–1466 (2021)

46. Rozum, J.C., Zañudo, J.G.T., Gan, X., Deritei, D., Albert, R.: Parity and time
reversal elucidate both decision-making in empirical models and attractor scaling
in critical Boolean networks. Sci. Adv. 7(29), eabf8124 (Jul 2021). https://doi.org/
10.1126/sciadv.abf8124

47. Schaub, M.A., Henzinger, T.A., Fisher, J.: Qualitative networks: a symbolic ap-
proach to analyze biological signaling networks. BMC Syst. Biol. 1(1), 1–21 (2007)

48. Schlatter, R., Schmich, K., Vizcarra, I.A., Scheurich, P., Sauter, T., Borner, C.,
Ederer, M., Merfort, I., Sawodny, O.: ON/OFF and beyond - A Boolean model
of apoptosis. PLoS Comput. Biol. 5(12) (2009). https://doi.org/10.1371/journal.
pcbi.1000595

https://doi.org/10.1038/s41540-022-00228-7
https://doi.org/10.1038/s41540-022-00228-7
https://doi.org/10.1038/s41540-022-00228-7
https://doi.org/10.1038/s41540-022-00228-7
https://doi.org/10.1038/s41540-022-00228-7
https://doi.org/10.1126/sciadv.abf8124
https://doi.org/10.1126/sciadv.abf8124
https://doi.org/10.1126/sciadv.abf8124
https://doi.org/10.1126/sciadv.abf8124
https://doi.org/10.1371/journal.pcbi.1000595
https://doi.org/10.1371/journal.pcbi.1000595
https://doi.org/10.1371/journal.pcbi.1000595
https://doi.org/10.1371/journal.pcbi.1000595

46

49. Schwab, J.D., Kühlwein, S.D., Ikonomi, N., Kühl, M., Kestler, H.A.: Concepts in
Boolean network modeling: What do they all mean? Comput. Struct. Biotechnol.
J. 18, 571–582 (2020)

50. Steinway, S.N., Zañudo, J.G.T., Michel, P.J., Feith, D.J., Loughran, T.P., Albert,
R.: Combinatorial interventions inhibit TGFβ-driven epithelial-to-mesenchymal
transition and support hybrid cellular phenotypes. npj Syst. Biol. Appl. 1(1), 1–12
(Nov 2015). https://doi.org/10.1038/npjsba.2015.14

51. Sun, Z., Jin, X., Albert, R., Assmann, S.M.: Multi-level modeling of light-induced
stomatal opening offers new insights into its regulation by drought. PLoS Comput.
Biol. 10(11), e1003930 (Nov 2014). https://doi.org/10.1371/journal.pcbi.1003930

52. Sun, Z., Jin, X., Albert, R., Assmann, S.M.: Multi-level modeling of light-induced
stomatal opening offers new insights into its regulation by drought. PLoS Comput.
Biol. 10(11), e1003930 (2014). https://doi.org/10.1371/journal.pcbi.1003930

53. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory net-
works—II. immunity control in bacteriophage lambda. Bull. Math. Biol. 57(2),
277–297 (Mar 1995)

54. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical de-
scription. J. Theor. Biol. 153(1), 1–23 (1991)

55. Trinh, V., Benhamou, B., Hiraishi, K., Soliman, S.: Minimal trap spaces of logical
models are maximal siphons of their Petri net encoding. In: Computational Meth-
ods in Systems Biology - 20th International Conference, CMSB 2022, Bucharest,
Romania, September 14-16, 2022, Proceedings. Lecture Notes in Computer Science,
vol. 13447, pp. 158–176. Springer (2022)

56. Trinh, V., Hiraishi, K., Benhamou, B.: Computing attractors of large-scale asyn-
chronous Boolean networks using minimal trap spaces. In: ACM International
Conference on Bioinformatics, Computational Biology and Health Informatics. pp.
13:1–13:10. ACM (2022). https://doi.org/10.1145/3535508.3545520

57. Tsirvouli, E., Ashcroft, F., Johansen, B., Kuiper, M.: Logical and experimental
modeling of cytokine and eicosanoid signaling in psoriatic keratinocytes. iScience
24(12), 103451 (2021). https://doi.org/10.1016/j.isci.2021.103451

58. Valverde, J.C., Mortveit, H.S., Gershenson, C., Shi, Y.: Boolean networks and
their applications in science and engineering. Complex. 2020, 6183798:1–6183798:3
(2020)

59. Vita, M., Henriksson, M.: The Myc oncoprotein as a therapeutic target for human
cancer. Semin. Cancer Biol. 16(4), 318–330 (Aug 2006)

60. Wollbold, J., Jaster, R., Müller, S., Rateitschak, K., Wolkenhauer, O.: Anti-
inflammatory effects of reactive oxygen species - a multi-valued logical model
validated by formal concept analysis. BMC Syst. Biol. 8, 1–20 (2014). https:
//doi.org/10.1186/s12918-014-0101-7

61. Wooten, D.J., Zañudo, J.G.T., Murrugarra, D., Perry, A.M., Dongari-Bagtzoglou,
A., Laubenbacher, R.C., Nobile, C.J., Albert, R.: Mathematical modeling of
the Candida albicans yeast to hyphal transition reveals novel control strategies.
PLoS Comput. Biol. 17(3), e1008690 (2021). https://doi.org/10.1371/journal.pcbi.
1008690

62. Zañudo, J.G.T., Albert, R.: Cell fate reprogramming by control of intracellular
network dynamics. PLoS Comput. Biol. 11(4), e1004193 (2015). https://doi.org/
10.1371/journal.pcbi.1004193, https://doi.org/10.1371/journal.pcbi.1004193

https://doi.org/10.1038/npjsba.2015.14
https://doi.org/10.1038/npjsba.2015.14
https://doi.org/10.1371/journal.pcbi.1003930
https://doi.org/10.1371/journal.pcbi.1003930
https://doi.org/10.1371/journal.pcbi.1003930
https://doi.org/10.1371/journal.pcbi.1003930
https://doi.org/10.1145/3535508.3545520
https://doi.org/10.1145/3535508.3545520
https://doi.org/10.1016/j.isci.2021.103451
https://doi.org/10.1016/j.isci.2021.103451
https://doi.org/10.1186/s12918-014-0101-7
https://doi.org/10.1186/s12918-014-0101-7
https://doi.org/10.1186/s12918-014-0101-7
https://doi.org/10.1186/s12918-014-0101-7
https://doi.org/10.1371/journal.pcbi.1008690
https://doi.org/10.1371/journal.pcbi.1008690
https://doi.org/10.1371/journal.pcbi.1008690
https://doi.org/10.1371/journal.pcbi.1008690
https://doi.org/10.1371/journal.pcbi.1004193
https://doi.org/10.1371/journal.pcbi.1004193
https://doi.org/10.1371/journal.pcbi.1004193
https://doi.org/10.1371/journal.pcbi.1004193
https://doi.org/10.1371/journal.pcbi.1004193

Trap spaces of multi-valued networks 47

A Van Ham encoding preserves unitary trap spaces

Recall that a sub-space of a multi-valued network is a mapping s which assigns
each vi ∈ V a subset of its domain set Ki, i.e., s(vi) ⊆ Ki.

We call a space continuous if every s(vi) is an integer interval: s(vi) = [k, l]
for some k, l ∈ N0.

The Van Ham encoding of a multi-valued network represents each variable
vi using |Ki| − 1 Boolean variables (here also called bits) which we denote
b
(1)
i , . . . b

(mi)
i (with mi being the maximal value of vi). In this encoding, a value

k ∈ Ki corresponds to a valuation of the Boolean variables where b
(j)
i = true if

and only if j ≤ k.
For convenience, we will denote this as strings of 1/0 symbols. For example,

11100 denotes value 3 of a variable where |Ki| = [0, 5]. Clearly, only a small
fraction of such Boolean valuations represent a valid integer value. We refer to
the rest as invalid values, or invalid encodings (e.g., 11010 represents an invalid
value).

The resulting Boolean network in Van Ham encoding then has the following
update functions f

b
(j)
i
(x) = (b

(j−1)
i ∧ fi,j(x)) ∨ b

(j+1)
i (assuming b

(0)
i = true

and b
(|Ki|)
i = false). Here, fi,j is a function which is true when variable vi can

transition to level j (i.e., fi,j(x) = 1 ⇔ Fi(x) ≥ j, Fi being the original multi-
valued function).

This encoding preserves two important properties:

– Bit b(j) can become active only when b(j−1) is active.
– Bit b(j) cannot become inactive while b(j+1) is active.

In terms of the original paper by Van Ham, these are the continuity conditions
of the encoding. Also, later it has been shown that if restricted to the valid states,
the asynchronous STG of Van Ham encoding is isomorphic to the asynchronous
STG of the original network.

Finally, observe that due to the unitary semantics, every fi,j(x) can be con-
structed such that if it depends on the value of vi, it only depends on the bits
b
(j−1)
i , b(j)i , and b

(j+1)
i (essentially, vi ≥ (j − 1), vi ≥ j, and vi ≥ (j + 1)).

Let us now observe several useful properties of the Van Ham encoding:

Theorem 8. Any state with an invalid value of variable vi can reach a state
with a valid value of vi.

Proof: Since the value of vi is encoded incorrectly, there must be a bit b(j)i = 0

such that b
(j+1)
i = 1. Based on the construction of f

b
(j)
i

, we now have that
f
b
(j)
i
(x) = 1 regardless of x. Hence the encoded Boolean network can transition

to a state with b
(j)
i = 1. Such state either has a valid value of vi, or the process

is repeated (up to |Ki| − 2 times) until the value is finally valid.

Theorem 9. No state with an invalid encoding of vi can be reached from a state
with a valid encoding of vi.

48

Proof: Follows from the continuity conditions.

Corollary 1. Any trap space of a Van Ham encoding contains at least one valid
state.

Theorem 10. Any continuous trap space of the original network is a trap space
of the Van Ham encoded network.

Proof: For a contradiction, assume that this is not true and there is an asyn-
chronous transition leaving the encoded trap space.

First, this transition cannot originate in any properly encoded state. The
asynchronous STG is isomorphic to the one of the original network. Hence such
transition must exist in the original network as well and the space is not a trap
space.

As such, the transition originates in an invalid state and modifies a variable
vi which belongs to an interval [k, l] (defined by the trap space). This means
that in the Boolean encoding, bits b

(k+1)
i , . . . , b

(l)
i are “free”. Now, suppose the

transition modifies a bit j ∈ [0,mi].

– If j ∈ [1, k−1], then the bit cannot be modified due to continuity (bit b(j+1)
i

is 1).
– If j ∈ [l+2,mi], then the bit cannot be modified due to continuity (bit b(j−1)

i

is 0).
– If j ∈ [k + 1, l], then modifying the bit will not leave the trap space.
– This leaves bits j = k and j = l + 1, with the assumption that the invalid

state still satisfies the continuity requirements (otherwise the transition is
impossible). First, let’s take j = k, meaning the transition sets the value of
b
(k)
i from 1 to 0. This also implies b

(k+1)
i = 0. Hence fi,k(x) = 0. Due to our

new assumption (above), we know that fi,k only depends on b
(k−1)
i , b(k)i , and

b
(k+1)
i . We thus also know that fi,k(x[vi = k]) = 0, where x[vi = k] is the

copy of x with a correclty encoded value of vi = k. The case of j = l + 1 is
then symmetric.

Consequently, there can be no such invalid transition and the trap space of
the original network is also a trap space of the Van Ham encoding.

Note that if the original space is minimal, the new space is minimal as well:
Assume there was a subspace that was a trap space. Then this subspace must
contain a valid state, and hence (by the isomorphism assumption), the valid
states of the subspace must form a trap space in the original network, constra-
dicting the minimality of the original space.

Trap spaces of multi-valued networks 49

Table 5: Time to obtain the first result for minimal trap space computation. All
times are in seconds. Where relevant, we give speed-up of trap-mvn compared
to the competing tool, and the average speed-up weighted by the runtime of
the competing tool. DNF denotes time-out of one hour. NM are non-monotonic
networks which cannot be processed using MPBN.

general unitary

Model name
trap
mvn

trap
mvn trappist

speed-up
trappist MPBN

speed-up
MPBN

BUDDING YEAST (146) 1.06 0.95 1.98 2.0x DNF –
AGS CELL FATE (148) 0.04 0.04 0.49 12.2x 0.71 17.7x
TCR METABOLISM (151) 0.12 0.10 0.61 6.1x 9.81 98.1x
TH1-TH2 DIFFER. (155) 0.05 0.05 0.48 9.6x NM –
TH DIFFER. (157) 0.06 0.06 0.50 8.3x 0.72 12.0x
YEAST CORE (159) 0.58 0.56 1.44 2.5x DNF –
IL17 DIFFER. (160) 0.06 0.06 0.52 8.6x 0.73 12.1x
MONOCYTES DIF. (161) 0.06 0.06 0.52 8.6x 0.72 12.0x
MESODERM SPEC. (167) 0.06 0.05 0.49 9.8x 0.99 19.8x
SEA URCHIN (175) 0.03 0.03 0.45 15.0x 0.82 27.3x
MYELOFIBR. ENV. (176) 0.04 0.04 0.45 11.2x 0.72 18.0x
MAST CELL (178) 0.03 0.03 0.44 14.6x 0.63 21.0x
MICROENV. CONTROL (179) 0.05 0.05 0.50 10.0x 1.36 27.2x
ALT. IN BLADDER (183) 0.04 0.04 0.45 11.2x 0.66 16.5x
BRAF TREATMENT (190) 0.03 0.03 0.45 15.0x 0.65 21.6x
SEGMENT POLARITY (192) 0.06 0.06 0.50 8.3x 0.87 14.5x
VULVAR PRECURSOR (194) 0.05 0.05 0.48 9.6x NM –
CTLA4 CHECKPOINT (195) 0.09 0.09 0.60 6.6x NM –
LYMPHOCYTE SPEC. (196) 0.07 0.06 0.49 8.1x NM –
ANTERIOR POST. (197) 0.09 0.07 0.54 7.7x 6.49 92.7x

MYC IN-VITRO 45.28 13.01 18.67 1.4x DNF –
MYC IN-VIVO 45.50 13.02 18.17 1.4x DNF –
METABOLISM 0.16 0.11 0.57 5.1x NM –
LEUKAEMIA 32.29 8.21 7.95 0.9x DNF –
SKIN MODEL 0.22 0.15 0.83 5.5x 4.82 32.1x
VPC 0.08 0.07 0.56 8.0x 1.15 16.4x

Average weighted speed-up: 2.8x 60.2x

50

Table 6: Time to obtain all minimal trap spaces. All times are in seconds and
|M | denotes the number of trap spaces. Where relevant, we give speed-up of
trap-mvn compared to the competing tool, and the average speed-up weighted
by the runtime of the competing tool. DNF denotes time-out of 24 hours. NM are
non-monotonic networks which cannot be processed using MPBN.

general unitary

Model name |M |
trap
mvn |M |

trap
mvn trappist

speed-up
trappist MPBN

speed-up
MPBN

BUDDING YEAST (146) 1 1.12 1 0.93 1.96 2.1x DNF –
AGS CELL FATE (148) 1 0.04 1 0.04 0.5 12.5x 0.47 11.7x
TCR METABOLISM (151) 9 0.12 9 0.11 0.63 5.7x 10.03 91.1x
TH1-TH2 DIFFER. (155) 68100 2.29 68100 2.42 5.59 2.3x NM –
TH DIFFER. (157) 6063664 19074.11 6063664 18165.82 55221.59 3.0x DNF –
YEAST CORE (159) 1 0.57 1 0.57 1.42 2.4x DNF –
IL17 DIFFER. (160) 4120 0.16 4120 0.15 0.83 5.5x 2.04 13.6x
MONOCYTES DIF. (161) 4 0.06 4 0.06 0.51 8.5x 0.43 7.1x
MESODERM SPEC. (167) 9088 0.24 9088 0.22 0.91 4.1x 3.67 16.6x
SEA URCHIN (175) 654 0.04 654 0.04 0.45 11.2x 0.68 17.0x
MYELOFIBR. ENV. (176) 4 0.04 4 0.04 0.48 12.0x 0.49 12.2x
MAST CELL (178) 19 0.03 19 0.03 0.44 14.6x 0.41 13.6x
MICROENV. CONTROL (179) 1452 0.09 1452 0.08 0.56 7.0x 2.34 29.2x
ALT. IN BLADDER (183) 25 0.04 25 0.04 0.45 11.2x 0.51 12.7x
BRAF TREATMENT (190) 32 0.03 32 0.03 0.44 14.6x 0.42 14.0x
SEGMENT POLARITY (192) 65 0.07 65 0.06 0.51 8.5x 0.89 14.8x
VULVAR PRECURSOR (194) 39 0.05 39 0.05 0.51 10.2x NM –
CTLA4 CHECKPOINT (195) 781216 239.43 781216 225.75 416.79 1.8x NM –
LYMPHOCYTE SPEC. (196) 28 0.07 28 0.07 0.49 7.0x NM –
ANTERIOR POST. (197) 1 0.09 1 0.07 0.53 7.5x 6.84 97.7x

MYC IN-VITRO 19707 85.34 19707 29.29 60.03 2.0x DNF –
MYC IN-VIVO 2187 52.45 2187 15.83 27.65 1.7x DNF –
METABOLISM 235160 242.27 235160 111.58 461.03 4.1x NM –
LEUKAEMIA 729 0.21 729 0.15 0.63 4.2x DNF –
SKIN MODEL 10000000+ DNF 10000000+ DNF DNF – DNF –
VPC 1458 0.17 1458 0.17 0.85 5.0x 1.76 10.3x

Average weighted speed-up: 3.0x 58.6x

Trap spaces of multi-valued networks 51

Table 7: Time to obtain all maximal trap spaces. All times are in seconds and
|M | denotes the number of trap spaces.

general unitary

Model name |M |
trap
mvn |M |

trap
mvn

BUDDING YEAST (146) 12 1.07 10 0.96
AGS CELL FATE (148) 11 0.04 11 0.04
TCR METABOLISM (151) 6 0.13 6 0.11
TH1-TH2 DIFFER. (155) 42 0.05 42 0.05
TH DIFFER. (157) 63 0.07 63 0.07
YEAST CORE (159) 10 0.58 8 0.57
IL17 DIFFER. (160) 30 0.07 30 0.07
MONOCYTES DIF. (161) 4 0.06 4 0.06
MESODERM SPEC. (167) 29 0.06 29 0.05
SEA URCHIN (175) 22 0.04 20 0.03
MYELOFIBR. ENV. (176) 7 0.04 7 0.04
MAST CELL (178) 8 0.03 8 0.03
MICROENV. CONTROL (179) 20 0.06 20 0.06
ALT. IN BLADDER (183) 8 0.04 8 0.04
BRAF TREATMENT (190) 10 0.03 10 0.03
SEGMENT POLARITY (192) 70 0.07 74 0.07
VULVAR PRECURSOR (194) 35 0.06 35 0.05
CTLA4 CHECKPOINT (195) 75 0.13 75 0.13
LYMPHOCYTE SPEC. (196) 10 0.07 10 0.07
ANTERIOR POST. (197) 9 0.09 8 0.08

MYC IN-VITRO 27 44.85 27 13.45
MYC IN-VIVO 21 45.32 21 13.43
METABOLISM 96 32.42 65 8.15
LEUKAEMIA 35 0.16 31 0.12
SKIN MODEL 78 0.24 62 0.18
VPC 38 0.09 34 0.08

52

Table 8: Time to compute the first fixed point. All times are in seconds. DNF
denotes time-out of one hour. NM are non-monotonic networks which cannot be
processed using MPBN.

trap-mvn trappist

Model name siphon deadlock siphon deadlock MPBN AN-ASP

BUDDING YEAST (146) 0.94 0.53 2.03 1.10 DNF 0.76
AGS CELL FATE (148) 0.04 0.04 0.48 0.49 0.69 0.41
TCR METABOLISM (151) 0.10 0.09 0.63 0.60 9.85 0.47
TH1-TH2 DIFFER. (155) 0.05 0.04 0.48 0.48 NM 0.41
TH DIFFER. (157) 0.06 0.06 0.51 0.49 0.72 0.41
YEAST CORE (159) 0.57 0.41 1.43 0.90 DNF 0.64
IL17 DIFFER. (160) 0.06 0.06 0.51 0.50 0.74 0.45
MONOCYTES DIF. (161) 0.06 0.06 0.52 0.50 0.73 0.43
MESODERM SPEC. (167) 0.05 0.05 0.49 0.48 0.99 0.42
SEA URCHIN (175) 0.03 0.03 0.43 0.44 0.81 0.37
MYELOFIBR. ENV. (176) 0.04 0.04 0.46 0.45 0.72 0.38
MAST CELL (178) 0.03 0.03 0.43 0.43 0.63 0.37
MICROENV. CONTROL (179) 0.05 0.05 0.48 0.48 1.36 0.41
ALT. IN BLADDER (183) 0.04 0.04 0.44 0.44 0.66 0.38
BRAF TREATMENT (190) 0.03 0.03 0.45 0.45 0.65 0.38
SEGMENT POLARITY (192) 0.06 0.06 0.48 0.48 0.88 0.40
VULVAR PRECURSOR (194) 0.05 0.05 0.48 0.48 NM 0.40
CTLA4 CHECKPOINT (195) 0.09 0.08 0.57 0.60 NM 0.47
LYMPHOCYTE SPEC. (196) 0.07 0.06 0.48 0.48 NM 0.40
ANTERIOR POST. (197) 0.07 0.07 0.52 0.53 6.44 0.41

MYC IN-VITRO 13.24 4.31 18.42 4.77 DNF 2.95
MYC IN-VIVO 13.23 4.34 17.97 4.68 DNF 2.97
METABOLISM 7.84 4.57 7.33 3.57 NM 2.78
LEUKAEMIA 0.11 0.10 0.56 0.55 DNF 0.43
SKIN MODEL 0.15 0.13 0.79 0.72 4.76 0.48
VPC 0.08 0.07 0.52 0.54 1.15 0.40

	Trap spaces of multi-valued networks: Definition, computation, and applications (Supplementary Material)

