
Computing Attractors of Large-Scale Asynchronous Boolean
Networks Using Minimal Trap Spaces

Van-Giang Trinh
∗

LIS, AIX-Marseille Université

Marseille, France

giang.trinh91@gmail.com

Kunihiko Hiraishi

School of Information Science, Japan

Advanced Institute of Science and

Technology

Nomi, ishikawa, Japan

hira@jaist.ac.jp

Belaid Benhamou

LIS, AIX-Marseille Université

Marseille, France

belaid.benhamou@univ-amu.fr

ABSTRACT
Boolean Networks (BNs) play a crucial role in modeling, analyz-

ing, and controlling biological systems. One of the most important

problems on BNs is to compute all the possible attractors of a BN.

There are two popular types of BNs, Synchronous BNs (SBNs) and

Asynchronous BNs (ABNs). Although ABNs are considered more

suitable than SBNs in modeling real-world biological systems, their

attractor computation is more challenging than that of SBNs. Sev-

eral methods have been proposed for computing attractors of ABNs.

However, none of them can robustly handle large and complex mod-

els. In this paper, we propose a novel method called mtsNFVS for

exactly computing all the attractors of an ABN based on its minimal

trap spaces, where a trap space is a subspace of state space that no

path can leave. The main advantage of mtsNFVS lies in opening

the chance to reach easy cases for the attractor computation. We

then evaluate mtsNFVS on a set of large and complex real-world

models with crucial biologically motivations as well as a set of

randomly generated models. The experimental results show that

mtsNFVS can easily handle large-scale models and it completely

outperforms the state-of-the-art method CABEAN as well as other

recently notable methods.

KEYWORDS
biological system, asynchronous Boolean network, attractor, mini-

mal trap space, negative feedback vertex set

ACM Reference Format:
Van-Giang Trinh, Kunihiko Hiraishi, and Belaid Benhamou. 2022. Com-

puting Attractors of Large-Scale Asynchronous Boolean Networks Us-

ing Minimal Trap Spaces. In 13th ACM International Conference on Bioin-
formatics, Computational Biology and Health Informatics (BCB ’22), Au-
gust 7–10, 2022, Northbrook, IL, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3535508.3545520

1 INTRODUCTION
Boolean Networks (BNs) are simple but efficient mathematical for-

malism for modeling, analyzing, and controlling complex biological

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

BCB ’22, August 7–10, 2022, Northbrook, IL, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9386-7/22/08. . . $15.00

https://doi.org/10.1145/3535508.3545520

systems (e.g., gene regulatory networks, signal transduction net-

works) [22, 39, 40]. Beyond systems biology, BNs have widely been

applied to various other areas, such as, mathematics, neural net-

works, social modeling, robotics, and computer science (see, e.g.,

[14, 39, 49]). Besides a plenty of applications, BNs are also an in-

teresting mathematical object that has recently attracted various

work in both theoretical and computational aspects [39].

Attractor detection in BNs is difficult and interesting in the-

ory but also has a plenty of applications in many areas [1]. In the

landscape of dynamics of a dynamical system, we can distinguish

between the transient and long-run dynamics. In BNs or other qual-

itative models, the long-run dynamics is referred to as attractors.
An attractor of a BN is a set of states such that the BN cannot escape

from this set once entered it. In the biological context, attractors of

a BN are linked to phenotypes [22] or functional cellular states (e.g.,

proliferation, apoptosis, or differentiation) [19]. Hence, analysis

of attractors could provide new insights into systems biology [3]

(e.g., the origins of cancers [4], SARS-CoV-2 [31], HIV [32]), which

play an important role in the development of new drugs [20]. Fur-

thermore, attractor detection also gives a starting point for many

control approaches for biological systems [7, 43]. To sum up, attrac-

tor detection is of great importance in analyzing and controlling

biological systems modeled as BNs.

There are two main types of BNs usually used for modeling

biological systems: Synchronous BNs (SBNs) [22] and Asynchro-

nous BNs (ABNs) [45]. The updating scheme of SBNs is that all

the nodes are updated simultaneously at each time step [12]. The

updating scheme of ABNs is that only one node is randomly and

uniformly selected to be updated at each time step [12]. In biology,

the updating process of each gene may spend various time from

fractions of a second to hours [38]. Moreover, the information on

time scales of components is usually lacking [38]. Hence, ABNs

are considered more suitable [38, 45] for representing various time

scales as well as dealing with the lack of knowledge on time scales.

However, the dynamics of an ABN is generally more complex than

that of its SBN counterpart, making the analysis of this ABN more

challenging [12, 38].

Several methods have been proposed for computing attractors of

ABNs, including symbolic-basedmethods [5, 6, 12, 13, 53], structure-

based methods [24, 36, 42, 51], decomposition-based methods [26,

44]. It is noted that there are also several methods [15, 23, 24, 36, 51]

for approximating attractors of ABNs. Obviously, they however

cannot guarantee finding exactly all the attractors of an ABN. To

our best knowledge, all the above-mentioned methods do not satis-

factorily handle large and complex models, i.e., the ones that have

https://doi.org/10.1145/3535508.3545520
https://doi.org/10.1145/3535508.3545520

BCB ’22, August 7–10, 2022, Northbrook, IL, USA Van-Giang Trinh, Kunihiko Hiraishi, and Belaid Benhamou

many nodes (e.g., hundreds of nodes and beyond) and many inter-

actions among the nodes. The best state-of-the-art methods [26, 51]

are not yet enable to robustly work with such ABN models.

Recently, an efficient method called iFVS-ABN [17] has been

proposed for exactly computing all the attractors of an ABN. iFVS-

ABN first computes a Negative Feedback Vertex Set (NFVS) of the

interaction graph of the ABN that is a signed directed graph that

expresses the effects (positive or negative) among the nodes. Based

on the chosen NFVS, iFVS-ABN systematically removes arcs in the

State Transition Graph (STG) of the ABN to get a candidate set of

states. Then, iFVS-ABN uses the reachability analysis on the ABN to

filter out this candidate set. Note that iFVS-ABN also uses a prepro-

cessing step called Preprocessing SSF to reduce the number of times

the reachability in ABNs is checked. The approach of iFVS-ABN

seems to be very promising and its prototype implementation sig-

nificantly outperforms the previous methods including genYsis [12],

CABEAN [26], and FVS-ABN [46] (the predecessor of iFVS-ABN).

However, the crucial issue of iFVS-ABN is that it still must perform

the reachability analysis in most cases [17]. Since the reachability in

ABNs is PSPACE-complete [9] and there is no reachability analysis

method that is robustly efficient for large models [17], the issue

may drastically reduce the efficiency of iFVS-ABN.

In this paper, we propose a novel method named mtsNFVS for

exactly computing all the attractors of an ABN. The method ex-

ploits the advantages of the efficient method [23] for computing

minimal trap spaces of the ABN and the NFVS-based approach of

iFVS-ABN [17]. In principle, similar to iFVS-ABN, mtsNFVS also

relies on NFVSs and the reducing dynamics to get a candidate set

of states, then filters out this set to get a resulting set that exactly

covers the set of attractors of the ABN. However, by using minimal

trap spaces mtsNFVS can open a chance to reach easy cases for the

reachability analysis in the filtering process, which are generally

unable in iFVS-ABN. In addition, we then propose several algorith-

mic improvements to several common constituent tasks between

mtsNFVS and iFVS-ABN, such as, the computation of the NFVS,

the computation of the candidate set, and Preprocessing SSF. These

algorithmic improvements are key factors for making the chance

opened by mtsNFVS effective.

We then use a set of large and complex real-world models ob-

tained from the literature in the field of systems biology and com-

pare the prototype implementation of mtsNFVS to the state-of-the-

art method CABEAN [26, 43] as well as other recently notable meth-

ods including AEON [6], PyBoolNet [23, 24], pystablemotifs [35, 36],

and iFVS-ABN [17]. The experimental results show that mtsNFVS

completely outperforms all the other methods. In particular, mt-

sNFVS is the only method that can consistently handle the two

most complex models of the benchmark set. Furthermore, we also

conduct an experiment on randomly generated models and obtain

the similar experimental conclusion.

The rest of this paper is organized as follows: Section 2 intro-

duces the basic concepts including Boolean networks, attractors,

interaction graphs, negative feedback vertex sets, and minimal trap

spaces. Section 3 presents the details of the proposed method (i.e.,

mtsNFVS). Section 4 reports the experimental results for evaluating

the efficiency of mtsNFVS. Finally, Section 5 concludes the paper

and draws future work.

2 PRELIMINARIES
Let N denote the set of natural numbers. Denote by N+ the set

N\{0} and by N+≤𝑘 the set

{
𝑖 ∈ N+ : 𝑖 ≤ 𝑘

}
. B := {𝑇 ≡ 1, 𝐹 ≡ 0}

denotes the Boolean domain. |𝐴| denotes the cardinality of a set 𝐴.

2.1 Boolean networks and their attractors
A Boolean Network (BN) [14] is defined as a pair (𝑉 , 𝐹), where
𝑉 = {𝑥1, ..., 𝑥𝑛} (𝑛 ∈ N+) is the set of nodes and 𝐹 = {𝑓1, ..., 𝑓𝑛} is
the set of Boolean functions. The size of a BN is characterized by its

number of nodes 𝑛. Each node 𝑥𝑖 is identified as a Boolean variable,

and is associated with a Boolean function 𝑓𝑖 : B
|IN (𝑓𝑖) | ↦→ B, where

IN (𝑓𝑖) is the set of input nodes of 𝑓𝑖 . The number of edges of a BN

is defined as

∑𝑛
𝑖=1 |IN (𝑓𝑖) |. Then, the average connectivity of a BN

is defined as the number of edges per node, i.e.,

∑𝑛
𝑖=1 |IN (𝑓𝑖) |

𝑛 .

Let 𝑥𝑖 (𝑡) ∈ B and 𝑥 (𝑡) = (𝑥1 (𝑡), ..., 𝑥𝑛 (𝑡)) ∈ B𝑛 denote the state

of node 𝑥𝑖 and the state of the BN at time 𝑡 , respectively. At each

time step, node 𝑥𝑖 can update its state by

𝑥𝑖 (𝑡 + 1) = 𝑓𝑖 (𝑥 (𝑡)) .

For simplicity, we use the notation 𝑓𝑖 (𝑥 (𝑡)) even if IN (𝑓𝑖) ⊂ 𝑉 .

An updating scheme of a BN specifies the way that the nodes of

the BN update their states through time evolution [14]. Following

the updating scheme, the BN transits from a state to another state

(possibly identical). This transition is called the state transition.
An Asynchronous Boolean Network (ABN) [18] can be seen as

the most popular BN model. The updating scheme of an ABN is

fully asynchronous, i.e., at each time step, only one node is non-

deterministically selected to be updated. The dynamics of an ABN

can be captured by a State Transition Graph (STG) that is a directed

graph in which each node corresponds to a state of the ABN and

each arc corresponds to a state transition between two states (pos-

sibly identical). The STG of an ABN of size 𝑛 has 2
𝑛
nodes and up

to 𝑛 × 2𝑛 arcs, making the analysis of the ABN more difficult [38].

Attractors are key dynamical behavior of a BN [38]. An attractor

of a BN is defined as a set of states satisfying any state in this set can

reach any state in this set and cannot reach any other state that is not

in this set [26]. Then, we can classify two main types of attractors:

singleton and cyclic attractors. A singleton attractor (or a fixed

point) consists of only one state. A cyclic attractor consists of at least

two states, and is formed by overlapping one ormore cycles of states.

It is worth noting that naive approaches for computing attractors of

an ABN (e.g., explicitly building the STG) are intractable for large

networks (e.g., 𝑛 ≥ 20) [8].

Example 1. We give a BN N = {𝑉 , 𝐹 }, where 𝑉 = {𝑥1, 𝑥2} and
𝐹 = {𝑓1, 𝑓2} with 𝑓1 = (𝑥1 ∧ 𝑥2) ∨ (¬𝑥1 ∧ ¬𝑥2), 𝑓2 = (𝑥1 ∧ 𝑥2) ∨
(¬𝑥1 ∧ ¬𝑥2). Herein, ∧, ∨, and ¬ denote the conjunction, disjunction,
and negation logical operators, respectively.

Let us consider the BN shown in Example 1. Figure 1a shows the

STG of its ABN counterpart. As we can see, the ABN has one fixed

point ({11}) and one cyclic attractor ({00, 01, 10}).

2.2 Interaction graphs
The interaction graph of a BN depicts the qualitative interactions

between nodes and is usually represented as a signed directed

Computing Attractors of Large-Scale Asynchronous Boolean Networks Using Minimal Trap Spaces BCB ’22, August 7–10, 2022, Northbrook, IL, USA

00

01

10

11

(a)

𝑥1 𝑥2

+

−

+

−

−

−
+

+

(b)

Figure 1: (a) STG of the ABN counterpart of the BN in Exam-
ple 1. (b) Interaction graph of the BN in Example 1.

graph on the set of nodes (see Definition 2.1). Furthermore, the

computation of the interaction graph of a BN is often fast [17, 34].

Definition 2.1 ([34]). LetN = (𝑉 , 𝐹) be a BN,where𝑉 = {𝑥1, .., 𝑥𝑛}
and 𝐹 = {𝑓1, ..., 𝑓𝑛}. The interaction graph of N is the signed di-

rected graph on 𝑉 defined by: for all 𝑥𝑖 , 𝑥 𝑗 ∈ 𝑉 , there exists a

positive (resp. negative) arc from 𝑥 𝑗 to 𝑥𝑖 if and only if there ex-

ists a state 𝑥 ∈ B𝑛 with 𝑥 𝑗 = 0 such that 𝑓𝑖 (𝑥) < 𝑓𝑖 (𝑥 𝑗) (resp.
𝑓𝑖 (𝑥) > 𝑓𝑖 (𝑥 𝑗)), where 𝑥 𝑗 denotes the state 𝑦 such that 𝑦 𝑗 = 1 − 𝑥 𝑗
and 𝑦𝑘 = 𝑥𝑘 for all 𝑘 ≠ 𝑗 .

Let 𝐼𝐺 be a signed directed graph. A positive (resp. negative)

cycle of 𝐼𝐺 is an elementary directed cycle that contains an even

(resp. odd) number of negative arcs. The length of a cycle is the

number of arcs it involves
1
. Then, a Feedback Vertex Set (FVS) of

𝐼𝐺 is a set of vertices 𝑈 that intersects every cycle of 𝐼𝐺 . In other

words, 𝐼𝐺 becomes acyclic after removing the vertices in 𝑈 from

𝐼𝐺 . A Negative Feedback Vertex Set (NFVS) of 𝐼𝐺 is a set of vertices

𝑈 − that intersects every negative cycle of 𝐼𝐺 . In other words, 𝐼𝐺

has no negative cycle after removing the vertices in 𝑈 − from it.

Clearly, an FVS is also an NFVS. The problem of finding a minimum

NFVS (resp. FVS) has been proved NP-complete [28] (resp. [21]).

As an example, we consider the BN N shown in Example 1. Fig-

ure 1b shows the interaction graph ofN . Arrows labeled with sym-

bol "+" denote positive arcs, whereas arrows labeled with symbol

"−" denote negative arcs. This interaction graph has two negative

cycles of length 1 (𝑥1
−−→ 𝑥1 and 𝑥2

−−→ 𝑥2) and two negative cycles

of length 2 (𝑥1
−−→ 𝑥2

+−→ 𝑥1 and 𝑥2
−−→ 𝑥1

+−→ 𝑥2). Then, it has one

NFVS {𝑥1, 𝑥2}, which is also the minimum one.

2.3 Minimal trap spaces
First, we prepare several notions as follows. Let 𝑆A = B𝑛 denote

the state space of an ABN A that consists of all possible 2
𝑛
states.

The forward image of a state 𝑥 with respect to node 𝑥𝑖 ∈ 𝑉 (denoted

by FIA
𝑖
(𝑥)) is defined to be the state 𝑦 such that 𝑥 𝑗 = 𝑦 𝑗 for all

𝑗 ∈ N+≤𝑛\{𝑖} and 𝑦𝑖 = 𝑓𝑖 (𝑥). Generally, the forward image of a

state set 𝐴 with respect to node 𝑥𝑖 ∈ 𝑉 is defined as FIA
𝑖
(𝐴) :=⋃

𝑥 ∈𝐴 FIA
𝑖
(𝑥). Following the updating scheme of ABNs, (𝑥,𝑦) is

an arc of the STG ofA if and only if there exists 𝑖 ∈ N+≤𝑛 such that

𝑦 = FIA
𝑖
(𝑥). We also use 𝑥

A−−→ 𝑦 (or simply 𝑥 −→ 𝑦 whenever the

context is clear) to denote this arc.

A non-empty set 𝑇 ⊆ 𝑆A is a trap set of the STG of A if and

only if for every 𝑥 ∈ 𝑇 and 𝑦 ∈ 𝑆A with 𝑥 −→ 𝑦 it holds that 𝑦 ∈ 𝑇 .
1
A self arc is considered as a cycle of length 1.

By this definition, an attractor of A is equivalent to an inclusion-

wise minimal trap set of its STG [23]. Consequently, every trap set

contains at least one minimal trap set and therefore at least one

attractor.

A subspace 𝑚 is defined as a mapping 𝑚 : 𝑉 ↦→ B ∪ ★. The

set of fixed variables of 𝑚 (denoted by 𝐷𝑚) is defined by 𝐷𝑚 :=

{𝑣 | 𝑣 ∈ 𝑉 ,𝑚(𝑣) ≠ ★}. The set of free variables of 𝑚 is simply

𝑉 \𝐷𝑚 . The set of associated states of𝑚 is denoted by 𝑆 [𝑚] := {𝑠 ∈
𝑆A | ∀𝑥𝑖 ∈ 𝐷𝑚 : 𝑠𝑖 = 𝑚(𝑥𝑖)}. Like a state, we denote a subspace
by a sequence of 𝑛 values that correspond to the variables in the

order given in 𝑉 . For example,𝑚 = ★★ 1 means that 𝐷𝑚 = {𝑥3},
𝑚(𝑥3) = 1,𝑚(𝑥1) = 𝑚(𝑥2) = ★, and𝑚 refers to the set of states

{001, 011, 101, 111}. Let 𝑆★A denote the set of all possible subspaces.

Note that

���𝑆★A ��� = 3
𝑛
and 𝑆A ⊂ 𝑆★A [23].

A trap space is defined as a subspace that is also a trap set. Then,

we define a partial order < on 𝑆★A as:𝑚 < 𝑚′ if and only if 𝑆 [𝑚] ⊆
𝑆 [𝑚′] and 𝑆 [𝑚] ≠ 𝑆 [𝑚′]. Consequently, a trap space𝑚 is minimal

if and only if there is no trap space𝑚′ ∈ 𝑆★A such that𝑚′ < 𝑚. For

example, the ABN counterpart of the BN shown in Example 1 has

all two trap spaces,𝑚1 = 11 and𝑚2 = ★★. Since𝑚1 < 𝑚2,𝑚1 is a

minimal trap space of the ABN.

3 NEWMETHOD
We here propose a new method named mtsNFVS for exactly com-

puting all the attractors of an ABN. This method exploits the ad-

vantages of the minimal trap space computation method [23] and

the approach of the NFVS-based method iFVS-ABN [17]. Hereafter,

we shall present the main idea as well as several key constituent

tasks in mtsNFVS.

3.1 Main idea
The main idea of mtsNFVS is similar to that of iFVS-ABN but using

minimal trap spaces of the ABN to guide the attractor computation

to some easy cases. Specifically, the general description of mtsNFVS

is given in Algorithm 1. For convenience, we first introduce some

new notations as follows:

• 𝐼𝐺 (N) denotes the interaction graph of a BN N ;

• 𝐺 (N) denotes the STG of an BN N ;

• 𝐹 (𝐺) denotes the set of fixed points of an STG 𝐺 ;

• 𝑅𝑈 ,𝐵 (𝐺) denotes the reduced STG obtained by systematically

removing arcs from an STG 𝐺 with respect to a set 𝑈 =

{𝑥𝑖1 , ..., 𝑥𝑖𝑘 } of nodes and a set 𝐵 = {𝑏𝑖1 , ..., 𝑏𝑖𝑘 } of Boolean
values such that arc (𝑥, 𝑥 ′) is removed from 𝐺 if and only if∨𝑘

𝑗=1 (𝑥𝑖 𝑗 ↔ 𝑏𝑖 𝑗 ∧ 𝑥 ′𝑖 𝑗 ↔ 1 − 𝑏𝑖 𝑗) holds;
• 𝑆 [𝑀] = ⋃

𝑚∈𝑀 𝑆 [𝑚] is the set of states represented by a set

𝑀 of minimal trap spaces;

• We say that a set 𝐹 of states covers a set 𝐴 of attractors

if and only if 𝐹 intersects every attractor of 𝐴 (formally,

𝐹 ∩ 𝑎𝑡𝑡 ≠ ∅,∀𝑎𝑡𝑡 ∈ 𝐴);
• We say that 𝐹 one-to-one covers the set 𝐴 of attractors if and

only if 𝐹 covers 𝐴 and |𝐹 | = |𝐴|.

We also briefly recall the description of Preprocessing SSF that

was first introduced in [46]. Preprocessing SSF aims at shrinking

the candidate set 𝐹 . At each iteration, Preprocessing SSF randomly

BCB ’22, August 7–10, 2022, Northbrook, IL, USA Van-Giang Trinh, Kunihiko Hiraishi, and Belaid Benhamou

Algorithm 1 mtsNFVS

Require: An ABN A.

Ensure: A set 𝐴 of states of A.

▶ Lines 1-7: Compute the set of minimal trap spaces and the

candidate set of states

1: Find an NFVS𝑈 − = {𝑥𝑖1 , ..., 𝑥𝑖𝑘 } of 𝐼𝐺 (A)
2: Choose a set 𝐵− = {𝑏𝑖1 , ..., 𝑏𝑖𝑘 } of Boolean values

3: 𝐹 ← 𝐹 (𝑅𝑈 −,𝐵− (𝐺 (A)))
4: 𝑀 ← the set of minimal trap spaces of A
5: 𝐴← ∅
6: 𝐴𝑖𝑛 ← ∅
7: 𝐴𝑜𝑢𝑡 ← ∅
▶ Lines 8-20: Compute attractors inside each minimal trap

space

8: for all𝑚 ∈ 𝑀 do
9: 𝐹𝑚 ← 𝑆 [𝑚] ∩ 𝐹
10: 𝐹 ← 𝐹\𝐹𝑚
11: 𝐴𝑚 ← ∅
12: Perform Preprocessing SSF to shrink the set 𝐹𝑚 if needed

13: while 𝐹𝑚 ≠ ∅ do
14: Remove a state 𝑠 from 𝐹𝑚
15: if ABNReach(A, 𝑠, 𝐴𝑚 ∪ 𝐹𝑚) = 𝑓 𝑎𝑙𝑠𝑒 then
16: 𝐴𝑚 ← 𝐴𝑚 ∪ {𝑠}
17: end if
18: end while
19: 𝐴𝑖𝑛 ← 𝐴𝑖𝑛 ∪𝐴𝑚
20: end for
▶ Lines 21-29: Compute attractors outside the minimal trap

spaces

21: 𝐹 ← 𝐹\𝑆 [𝑀]
22: Perform Preprocessing SSF to shrink the set 𝐹 if needed

23: 𝐹 ← 𝐹\𝑆 [𝑀]
24: while 𝐹 ≠ ∅ do
25: Remove a state 𝑠 from 𝐹

26: if ABNReach(A, 𝑠, 𝑆 [𝑀] ∪𝐴𝑖𝑛 ∪𝐴𝑜𝑢𝑡 ∪ 𝐹) = 𝑓 𝑎𝑙𝑠𝑒 then
27: 𝐴𝑜𝑢𝑡 ← 𝐴𝑜𝑢𝑡 ∪ {𝑠}
28: end if
29: end while
▶ Lines 30-31: Return the set of states corresponding to all the

inside and the outside attractors

30: 𝐴← 𝐴𝑖𝑛 ∪𝐴𝑜𝑢𝑡
31: return 𝐴

chooses a node 𝑥𝑖 , then updates 𝐹 by its forward image with re-

spect to node 𝑥𝑖 (i.e., 𝐹 ← FIA
𝑖
(𝐹)). The number of iterations of

Preprocessing SSF is specified by the parameter 𝐼_𝑀𝐴𝑋 , which can

be empirically set. It is important to note that in [17, 46] FIA
𝑖
(𝐹) is

computed based on the restricted transition system of A with re-

spect to the set 𝐹 encoded as a BDD of 2𝑛 variables [12, 16]. Hence,

the computation of FIA
𝑖
(𝐹) may be too long even intractable for

large and complex networks.

mtsNFVS first computes an NFVS 𝑈 − of the ABN A (Line 1 of

Algorithm 1) and arbitrarily chooses a set of Boolean values 𝐵−

corresponding to the nodes in the NFVS (Line 2 of Algorithm 1).

Based on𝑈 − and 𝐵−, mtsNFVS computes a candidate set of states

(Line 3 of Algorithm 1). This step is similar to that in iFVS-ABN.

However, mtsNFVS calculates the set of minimal trap spaces of A
instead of the set of fixed points of A (Line 4 of Algorithm 1). The

computation of the NFVS𝑈 − and the set of minimal trap spaces𝑀

shall be discussed in detail in Section 3.2, whereas the computation

of the candidate set shall be discussed in detail in Section 3.3.

Each minimal trap space contains at least one attractor of A
and minimal trap spaces are mutually disjoint. Therefore, for each

minimal trap space𝑚, mtsNFVS gets a candidate set 𝐹𝑚 of states,

and then obviously excludes 𝐹𝑚 from 𝐹 (Lines 9-10 of Algorithm 1).

Since 𝐹 covers all the attractors of A (see Theorem 3.1), 𝐹𝑚 must

cover all the attractors contained in minimal trap space𝑚. If 𝐹𝑚
contains many states, mtsNFVS can use Preprocessing SSF to shrink

it (Line 12 of Algorithm 1). Now, mtsNFVS performs the filtering

process (as that in [17, 46]) on the candidate set 𝐹𝑚 to get all the

attractors contained in 𝑚 (Lines 13-18 of Algorithm 1). Herein,

ABNReach is the efficiently exact algorithm proposed in [17] for

checking the reachability in ABNs. The parameters of this algo-

rithm include the considered ABN, the initial state, and the set of

target states (e.g., A, 𝑠 , and 𝐴𝑚 ∪ 𝐹𝑚 in Line 15 of Algorithm 1, re-

spectively). Note that in each minimal trap space𝑚, Preprocessing

SSF and the filtering process can be performed on the reduced ABN

A ′ instead of the original ABN A. A ′ is obtained by fixing the

fixed nodes of𝑚 inA, and then propagating the fixed values to the

Boolean functions of the remaining nodes (see [23] for the reduc-

tion technique using minimal trap spaces). SinceA ′ is significantly
smaller than A in most cases [23, 36], the use of the reduction

technique may (potentially) reduce significantly the computational

burden for each minimal trap space.

Theorem 3.1 ([17]). LetN be a BN andA be its ABN counterpart.
Let 𝑈 − be an NFVS of 𝐼𝐺 (N) and 𝐵− be a set of Boolean values
corresponding to the nodes of𝑈 −. Let 𝑎𝑡𝑡 be an attractor of A. Then
there exists a state 𝑠 such that 𝑠 ∈ 𝑎𝑡𝑡 and 𝑠 is a fixed point of the
reduced STG (i.e., 𝑅𝑈 −,𝐵− (𝐺 (A))).

As mentioned in [23], there may be some attractors that are

outside of any minimal trap space of A. Hence, mtsNFVS needs to

process the remaining part of 𝐹 . If this part contains many states,

mtsNFVS can use Preprocessing SSF to shrink it (Line 22 of Algo-

rithm 1). Note that after Preprocessing SSF, 𝐹 may contain some

states in 𝑆 [𝑀]. Therefore, mtsNFVS needs to exclude these states

from 𝐹 (Line 23 of Algorithm 1). mtsNFVS then performs the fil-

tering process on the current candidate set 𝐹 (Lines 24-29 of Al-

gorithm 1). There is a difference to the filtering process for each

minimal trap space. When checking the reachability in A, the tar-

get set can be expanded to 𝑆 [𝑀] ∪𝐴𝑖𝑛 ∪𝐴𝑜𝑢𝑡 ∪ 𝐹 instead of only

𝐴𝑖𝑛 ∪𝐴𝑜𝑢𝑡 ∪ 𝐹 as in [17, 46] (Line 26 of Algorithm 1). The reason

is that if a state 𝑠 reaches a state 𝑠 ′ ∈ 𝑆 [𝑀] in the STG ofA, then 𝑠

must reach at least one attractor contained in 𝑀 , consequently 𝑠

must reach a state in 𝐴𝑖𝑛 . This expansion may reduce the time for

checking the reachability in A (especially in the case of reachable)

because 𝑆 [𝑀] ∪ 𝐴𝑖𝑛 ∪ 𝐴𝑜𝑢𝑡 ∪ 𝐹 may be potentially much larger

than 𝐴𝑖𝑛 ∪𝐴𝑜𝑢𝑡 ∪ 𝐹 . Finally, mtsNFVS returns the set 𝐴 of states

that one-to-one covers the set of attractors of A.

For illustration, we here show a running example for mtsNFVS.

Let us consider the ABN counterpart A of the BN shown in Ex-

ample 1. As shown in Figure 1a, A has one fixed point ({11}) and

Computing Attractors of Large-Scale Asynchronous Boolean Networks Using Minimal Trap Spaces BCB ’22, August 7–10, 2022, Northbrook, IL, USA

one cyclic attractor ({00, 01, 10}). The interaction graph of A has

one NFVS (also the minimum one) {𝑥1, 𝑥2}. Next, assume that mt-

sNFVS chooses𝑈 − = {𝑥1, 𝑥2} and 𝐵− = {𝑏1, 𝑏2} = {0, 0}. We then

have 𝐹 (𝑅𝑈 −,𝐵− (𝐺 (A))) = {00, 11}, 𝑀 = {𝑚1} where 𝑚1 = 11,

𝑆 [𝑀] = 𝑆 [𝑚1] = {11}. For 𝑚1, we get 𝐹𝑚 = {11}. Since 𝐹𝑚 has

only one state, we do not need to proceed Preprocessing SSF and

simply add this state to the set 𝐴𝑚 . After finishing Line 19 of Algo-

rithm 1, we have𝐴𝑖𝑛 = {11} and 𝐹 = {00}. As we can see, the cyclic

attractor {00, 01, 10} is outside of any minimal trap space of A but

it is still covered by 𝐹 . The latter part of mtsNFVS (Lines 21-29 of

Algorithm 1) guarantees to compute all the attractors of A. Now,

mtsNFVS performs the filtering process on 𝐹 . Since 00 (i.e., 𝑠) does

not reach {11} (i.e., 𝑆 [𝑀] ∪𝐴𝑖𝑛 ∪𝐴𝑜𝑢𝑡 ∪𝐹) in𝐺 (A), mtsNFVS adds

00 to the set 𝐴𝑜𝑢𝑡 . Finally, mtsNFVS returns 𝐴 = {11, 00} where
11 corresponds to the fixed point {11} and 00 corresponds to the

cyclic attractor {00, 01, 10}.
Next, we show the correctness of mtsNFVS as in Theorem 3.2.

Theorem 3.2. Algorithm 1 exactly finds all attractors of an ABN.

Proof. After finishing Line 4 of Algorithm 1, 𝐹 covers all the

attractors ofA (1) following Theorem 3.1. Hence, 𝐹𝑚 (also𝐴𝑚∪𝐹𝑚)

must cover all the attractors of A contained in minimal trap space

𝑚. By the fact that if a state is in an attractor, all its reachable

states are also in this attractor, Preprocessing SSF and the filtering

process always preserve the above property. Hence,𝐴𝑚 finally one-

to-one covers the set of all attractors of A contained in𝑚. As a

consequence, after finishing Line 20 of Algorithm 1,𝐴𝑖𝑛 one-to-one

covers all the attractors inside the minimal trap spaces of A (2).

A state in 𝑆 [𝑚] always reach in 𝐺 (A) only the attractors inside

minimal trap space𝑚 of A. As a consequence, every state in 𝑆 [𝑀]
always reaches in𝐺 (A) the states in𝐴𝑖𝑛 (3). After finishing Line 21

of Algorithm 1, 𝐹 (also𝐴𝑜𝑢𝑡∪𝐹) covers only all the attractors outside
any minimal trap space of A because (1) and (3) holds. Clearly,

after finishing Preprocessing SSF and Line 23 of Algorithm 1, this

property is preserved. State 𝑠 reaches𝐴𝑖𝑛 ∪𝐴𝑜𝑢𝑡 ∪𝐹 in𝐺 (A) if and
only if 𝑠 reaches 𝑆 [𝑀] ∪𝐴𝑖𝑛 ∪𝐴𝑜𝑢𝑡 ∪ 𝐹 in𝐺 (A) because (3) holds.
Therefore, the filtering process also preserves the property. After

finishing Line 29 of Algorithm 1, 𝐴𝑜𝑢𝑡 finally one-to-one covers all

the attractors outside any minimal trap space of A (4).

From (2) and (4), we can conclude that the resulting set 𝐴 one-

to-one covers the set of attractors of A. □

Finally, we discuss the advantages of mtsNFVS as compared to

PyBoolNet (i.e., the method for approximating the attractors of an

ABN [23, 24]) and iFVS-ABN. First, PyBoolNet relies on only the set

of minimal trap spaces of an ABN to get the set of approximations.

For each minimal trap space, PyBoolNet uses random walks to get

an approximation (a state) that is expected belonging to an attractor

contained in the minimal trap space. However, there may be some

attractors that are outside of any minimal trap space or one minimal

trap space may contain more than one attractor. Hence, we have no

chance to get such attractors with PyBoolNet. On the other hand,

mtsNFVS always guarantees to compute all the attractors of the

ABN (see Theorem 3.2). Second, iFVS-ABN always must perform

the reachability analysis unless 1) the ABN has only fixed points

and Preprocessing SSF makes the number of candidates equal 0 [17]

or 2) the ABN has only one cyclic attractor and Preprocessing SSF

makes the number of candidates equal 1 [17]. Hence, iFVS-ABN

has no chance to avoid the reachability analysis in most cases. On

the other hand, mtsNFVS has a chance to avoid the reachability

analysis if the number of attractors of the ABN is equal to the

number of minimal trap spaces of the ABN, which occurs in most

cases [23, 35, 36]. In the case, if Preprocessing SSF in each minimal

trap space (Line 12 of Algorithm 1) makes the number of candidates

equal 1 and Preprocessing SSF in the remaining candidate part

(Line 22 of Algorithm 1) makes the number of candidates equal 0,

then mtsNFVS does not need to check the reachability in ABNs.

Furthermore, the expansion of the target set in mtsNFVS (Line 26

of Algorithm 1) may reduce the time for the reachability analysis

in the case of reachable. However, to make the above advantages

as compared to iFVS-ABN effective, we also need to propose al-

gorithmic improvements to several common constituent tasks of

mtsNFVS and iFVS-ABN such as Preprocessing SSF. We present the

proposed algorithmic improvements in the following subsections.

3.2 Computing negative feedback vertex sets
and minimal trap spaces

The first step of mtsNFVS is to find an NFVS𝑈 − of the interaction
graph of the ABN (Line 1 of Algorithm 1). We note that using

a smaller NFVS would open a chance to get a smaller candidate

set [17] and the problem of finding a minimum NFVS of a signed

directed graph is NP-complete [21]. In [17], iFVS-ABN uses a simple

greedy algorithm called findNFVS for finding an (not necessarily

minimum) NFVS. The seed set used in this greedy algorithm is the

FVS of the ABN obtained by applying the simple greedy algorithm

by [46], which does not guarantee to return a minimum FVS, to

the interaction graph. Clearly, using a smaller seed can open a

chance to get a smaller NFVS. Hence, we here apply the algorithm

by [11] for approximately computing an FVS of the interaction

graph. We use an implementation of this algorithm that is publicly

available at https://github.com/jgtz/FVS_python3. The usefulness

of the updated algorithm for finding an (not necessarily minimum)

NFVS shall be shown in our benchmarks presented in Section 4.

Regarding the computation of minimal trap spaces (Line 4 of

Algorithm 1), we simply use the Answer Set Programming (ASP)

based method by [23], which is integrated into PyBoolNet [24].

Note that, there may be other methods for computing minimal trap

spaces of an ABN such as the Integer Linear Programming (ILP)

based method by [23], which is also integrated into [24]. However,

in [23] the ASP-based method has been shown more time-efficient

than the ILP-based method.

3.3 Computing fixed points of the reduced state
transition graph

Similar to iFVS-ABN [17], mtsNFVS also needs to compute the set

of fixed points of the reduced STG with respect to a set of nodes𝑈 −

and a set of Boolean values 𝐵− (i.e., 𝐹 (𝑅𝑈 −,𝐵− (𝐺 (A))) as shown
in Line 3 of Algorithm 1). In [17], 𝐹 (𝑅𝑈 −,𝐵− (𝐺 (A))) is computed

by using Binary Decision Diagrams (BDDs) [48] or Satisfiability

(SAT) solvers [10]. Both the techniques are inefficient for large

networks especially the networks comprising complex Boolean

functions [17, 46]. Hence, we need a more efficient method.

https://github.com/jgtz/FVS_python3

BCB ’22, August 7–10, 2022, Northbrook, IL, USA Van-Giang Trinh, Kunihiko Hiraishi, and Belaid Benhamou

We first construct an ABN (denoted by A𝑟𝑒𝑑
) such that its set

of fixed points is identical to 𝐹 (𝑅𝑈 −,𝐵− (𝐺 (A))) (see Theorem 3.3).

A𝑟𝑒𝑑
includes the set of nodes ofA and its set of Boolean functions

is given by:{
𝑓 𝑟𝑒𝑑
𝑖

= 𝑓𝑖 if 𝑥𝑖 ∉ 𝑈
−
;

𝑓 𝑟𝑒𝑑
𝑖

= [(𝑥𝑖 ↔ 𝑏𝑖) ∧ 𝑏𝑖] ∨ [¬(𝑥𝑖 ↔ 𝑏𝑖) ∧ 𝑓𝑖] if 𝑥𝑖 ∈ 𝑈 −;

where↔ denotes the bi-implication logical operator.

Theorem 3.3. The set of fixed points ofA𝑟𝑒𝑑 is identical to the set
of fixed points of the reduced STG of A with respect to𝑈 − and 𝐵−.

Proof. It is important to note that a state 𝑥 in𝐺 (A) will become

a fixed point of𝑅𝑈 −,𝐵− (𝐺 (A)) if and only if (1) 𝑓𝑖 (𝑥) = 𝑥𝑖 ,∀𝑥𝑖 ∉ 𝑈 −
and (2) 𝑥𝑖 = 𝑏𝑖 or 𝑥𝑖 = 1 − 𝑏𝑖 ∧ 𝑓𝑖 (𝑥) = 𝑥𝑖 , ∀𝑥𝑖 ∈ 𝑈 − [17].

Suppose that 𝑥 is a fixed point ofA𝑟𝑒𝑑
. Then, 𝑓𝑖 (𝑥) = 𝑓 𝑟𝑒𝑑𝑖

(𝑥) =
𝑥𝑖 for ∀𝑥𝑖 ∉ 𝑈 −. We consider the case that 𝑥𝑖 ∈ 𝑈 −. If 𝑥𝑖 = 𝑏𝑖 ,

then 𝑓 𝑟𝑒𝑑
𝑖

= 𝑏𝑖 = 𝑥𝑖 ; leading there is no constraint on 𝑓𝑖 (𝑥). If
𝑥𝑖 = 1−𝑏𝑖 , then 𝑓𝑖 (𝑥) = 𝑓 𝑟𝑒𝑑𝑖

(𝑥) = 𝑥𝑖 . Hence, 𝑥 is also a fixed point

of 𝑅𝑈 −,𝐵− (𝐺 (A)).
Suppose that𝑥 is a fixed point of𝑅𝑈 −,𝐵− (𝐺 (A)). Then, 𝑓 𝑟𝑒𝑑𝑖

(𝑥) =
𝑓𝑖 (𝑥) = 𝑥𝑖 for ∀𝑥𝑖 ∉ 𝑈 −. We consider the case that 𝑥𝑖 ∈ 𝑈 −. If
𝑥𝑖 = 1 − 𝑏𝑖 , then 𝑓𝑖 (𝑥) = 𝑥𝑖 ; leading to 𝑓 𝑟𝑒𝑑

𝑖
(𝑥) = 𝑓𝑖 (𝑥) = 𝑥𝑖 . If

𝑥𝑖 = 𝑏𝑖 , then there is no constraint on 𝑓𝑖 (𝑥) but 𝑓 𝑟𝑒𝑑𝑖
(𝑥) = 𝑏𝑖 = 𝑥𝑖 .

Hence, 𝑥 is also a fixed point of A𝑟𝑒𝑑
. □

From Theorem 3.3, we now can compute 𝐹 (𝑅𝑈 −,𝐵− (𝐺 (A))) by
computing the set of fixed points of A𝑟𝑒𝑑

. The ASP-based method

by [23] has been recognized very efficient for computing the set

of fixed points of an ABN [23, 24, 35, 36]. Note that the ILP-based

method by [2] and the algebraic-based method by [50] are also very

efficient methods for this task; but they are designed specifically

for special classes of BNs (𝑁 -𝐾 models with 𝐾 = 2 and AND-NOT

models, respectively). Hence, we here use the ASP-based method

for computing the set of fixed points of A𝑟𝑒𝑑
. Its usefulness shall

be shown in our benchmarks presented in Section 4.

3.4 Improving Preprocessing SSF
Since the reachability in ABNs is PSPACE-complete in theory and

may take extremely long time in practice, Preprocessing SSF usually

sets 𝐼_𝑀𝐴𝑋 large enough with the expectation that the number

of candidates for the filtering process is as small as possible. Ac-

cordingly, the time for Preprocessing SSF may become too long.

To improve the efficiency of Preprocessing SSF (consequently, the

efficiency of mtsNFVS), we propose two algorithmic enhancements

for Preprocessing SSF in mtsNFVS as follows.

First, we propose a new way for computing FIA
𝑖
(𝐹). Instead

of using the restricted transition system, mtsNFVS computes the

forward image of each state 𝑥 in 𝐹 . FIA
𝑖
(𝑥) is easily computed by

only changing the value of node 𝑥𝑖 to 𝑓𝑖 (𝑥). Clearly, the number

of forward images needed to be computed at each iteration of

Preprocessing SSF is |𝐹 |. Hence, the new way is simple but maybe

very efficient because |𝐹 | drastically decreases in most cases [17, 46].

Note that the new way can apply to both Preprocessing SSF in

each minimal trap space and Preprocessing SSF in the remaining

candidate part (see Subsection 3.1).

Second, for Preprocessing SSF in the remaining candidate part,

we try to early exclude from 𝐹 some states that cannot belong to

an attractor outside the minimal trap spaces of the ABN. The set

of states referred by the minimal trap spaces (i.e., 𝑆 [𝑀]) usually
contains much more states than 𝐹 . Therefore, it is likely possible

that several states of 𝐹 will be covered by 𝑆 [𝑀] after only a small

number of iterations. Since a state in 𝑆 [𝑀] cannot reach an outside

attractor, we can early exclude the states in 𝑆 [𝑀] from 𝐹 . Specif-

ically, we divide Preprocessing SSF into many spans. Each span

includes a given number of iterations (i.e., the length of a span).

When finishing each span, we simply perform 𝐹 ← 𝐹\𝑆 [𝑀]. For
simplicity, we set the same length (empirically 𝑛) for all spans.

Both the proposed enhancements may reduce the computational

time of Preprocessing SSF. In particular, they allow us to set 𝐼_𝑀𝐴𝑋

much larger (empirically 20000 × 𝑛), thus likely to get a smaller

candidate set even to early encounter the best cases (i.e., |𝐹 | = 1

for Preprocessing SSF in each minimal trap space and |𝐹 | = 0 for

Preprocessing SSF in the remaining candidate part). The usefulness

of the two enhancements shall be justified by our benchmarks

presented in Section 4.

4 EVALUATION
To evaluate the effectiveness of the proposed method mtsNFVS, we

conducted experiments on both real-world biological models and

randomly generated models. We compared mtsNFVS
2
with five

previously notable methods including CABEAN [26, 43], AEON [6],

PyBoolNet [23, 24], pystablemotifs [35, 36], and iFVS-ABN [17].

To the best of our knowledge, all these previous methods are the

most recent and advanced tools targeting the detection of non-

trivial attractors in ABNs. Moreover, there has been no complete

comparison among them.

4.1 Experimental results on real-world models
We selected seven real-world models, which are large and complex

(i.e., high average connectivity), from the literature. We here give a

brief description of the models. The structure information of the

models can be found in Table 1.

• The T-LGL network models the T cell large granular lym-

phocyte (T-LGL) survival signaling network that features a

clonal expansion of antigen-primed, competent, and cyto-

toxic T lymphocytes [52].

• The CACC model describes the development of colitis asso-

ciated colon cancer by integrating the extracellular microen-

vironment and intracellular signalling pathways, helping to

obtain a more systematic understanding of inflammation-

associated tumourigenesis as well as to identify novel thera-

peutic approaches [25].

• The AD model is a relevant mathematical model of the neu-

ronal molecular regulatory network for Alzheimer’s disease,

with the goal of enabling researchers to gain a better mech-

anistic understanding of Alzheimer’s disease pathological

dynamics at a molecular-regulation level and systematically

investigate candidate molecular targets for their ability to

alter the levels of pathogenic proteins [33].

2
Released at https://github.com/giang-trinh/mtsNFVS.git

https://github.com/giang-trinh/mtsNFVS.git

Computing Attractors of Large-Scale Asynchronous Boolean Networks Using Minimal Trap Spaces BCB ’22, August 7–10, 2022, Northbrook, IL, USA

• The IL-6model is a comprehensive large-scale networkmodel

whose analysis helps to uncover general topological features

and to make testable predictions on the stimulus-response

behaviour of the IL-6 signalling network, which is crucially

involved in the regulation of a multitude of physiological

processes, in particular coordinating the immune response

upon bacterial infection and tissue injury [37].

• The CELL CYCLE 2019 network, a Boolean model of model

growth factor signaling, can reproduce PI3K oscillations and

link them to cell cycle progression and apoptosis; thus is

an important starting point for the predictive modeling of

cell fate decisions that include AKT1-driven senescence, as

well as the non-intuitive effects of drugs that interfere with

mitosis [41].

• The SIPC model considers the major signalling pathways

known to be deregulated, helping to better understand the

mechanisms of tumorigenesis and possible treatment re-

sponses for prostate cancer, the second most occurring can-

cer in men worldwide [27].

• The CASCADE 3.0 model is the most recent Boolean model

of cancer cell lines, which demonstrates the potential of

logical modeling for the prediction of drug synergies [47].

Note that six of the seven models contain source nodes, which

are usually fixed to either 0 or 1 in most previous Boolean network

analysis [26]. As targeting more comprehensive analysis of the real-

world models, we considered all possible values of a source node.

In addition, CABEAN requires applying a network reduction tech-

nique to the input model. This reduction technique fully conserves

the attractors of an ABN [30]. To ensure the fairness of the evalua-

tion, we also applied this reduction technique to all the real-world

models before running them on the compared methods. Then, we

ran all the benchmarks on a virtual machine whose environment

is CPU: Intel(R) Core(TM) i7-3630QM 2.40GHz x 4, Memory: 8 GB,

Ubuntu 18.04.2 64 bit. The time limit for each model is 10 hours.

Table 2 shows the experimental results on real-world models.

Each model (except CELL CYCLE 2019) has at least one cyclic

attractor, which indicates that its attraction detection does not fall

to the trivial case. In general, mtsNFVS completely outperforms

all the other methods. More specifically, we analyze the obtained

results of each method as follows.

PyBoolNet. In all the sevenmodels, PyBoolNet failed to compute

attractors within the time limit. For each model, PyBoolNet quickly

computed the approximations, but took long time for checking

the correctness of the approximations via model checking. This

observation is consistent with that shown in [23].

CABEAN. In all the seven models, CABEAN failed to finish

the computation. We observed that in six models (except the CELL

CYCLE 2019 model), CABEAN terminated before exceeding the

time limit and the segmentation fault error was printed. Anyway,

we also reported the timewhen CABEAN terminated for eachmodel

(see Table 2). Even in three models (T-LGL, CACC, CASCADE 3.0),

that number is quite large. The reason for this may be that the real-

worldmodels have not onlymany nodes but also complex structures

(see Table 1). Especially, the decomposition approach of CABEAN

heavily relies on SCCs of the interaction graph, whereas the largest

SCC size of each model is large. In this case, the decomposition of

CABEAN may not reduce the complexity of the model enough to

continue with its attractor search; leading to the termination before

exceeding the time limit. This observation is consistent with that

presented in [6].

AEON. This method failed to compute attractors within the time

limit for the three models (SPIC, CELL CYCLE 2019, and CASCADE

3.0). It is apparent because SPIC and CASCADE 3.0 are here the two

largest models with very complex structures, CELL CYCLE 2019

is here the most complex model, whereas AEON generally relies

on traversing the STG although it uses some heuristics to speed

up the traversal. In the four remaining models, AEON succeeded

to finish the computation in reasonable time. As compared to Py-

BoolNet and CABEAN, AEON is more efficient. This observation is

consistent with the comparison between AEON and CABEAN [6],

which shows that AEON robustly outperforms CABEAN.

pystablemotifs. We first note that this method computes exact

fixed points and quasi-attractors, which correspond to but may not

be identical to cyclic attractors of an ABN. In some cases, it may

return only a lower bound and an upper bound for the number of

attractors or it may not verify completely the attractor’s existence

due to computational limits [36]. In the latter case, pystablemotifs

manages its reactions to computation limits through the param-

eter 𝑠𝑖𝑚𝑠𝑖𝑧𝑒3. In the four models (IL-6, CELL CYCLE 2019, SIPC,

and CASCADE 3.0), pystablemotifs failed to finish the computa-

tion within the time limit. For the CELL CYCLE 2019, SIPC, and

CASCADE 3.0 models, the reason may be that the numbers of di-

rected cycles in the parity-expanded networks are computationally

intractable. Indeed, these three models have many nodes as well

the largest SCCs of large size (see Table 1). For the IL-6 model, the

reason may be that it has many source nodes, which is one of the

inefficient cases of pystablemotifs [36]. For the two models (T-LGL

and AD), pystablemotifs returned only intervals for the numbers of

attractors ([318-336] and [2-3], respectively). We tried to increase

𝑠𝑖𝑚𝑠𝑖𝑧𝑒 to 100 hoping to obtain more precise results; however, pys-

tablemotifs obtained the run-time error after 2061.53s and 3271.44s,

respectively. The observation on the T-LGL model is consistent

with that shown in [35]. For the CACC model, pystablemotifs re-

turned the exact number of attractors but all the cyclic attractors

computed by pystablemotifs and AEON are not the same. Specifi-

cally, pystablemotifs returned two quasi-attractors of size 8, two

quasi-attractors of size 128, two quasi-attractors of size 32786, and

two quasi-attractors of size 262144; whereas, AEON returned two

attractors of size 6, two attractors of size 96, two attractors of size

10240, and two attractors of size 61440. To sum up, pystablemotifs

is unable to fully analyze any model.

iFVS-ABN. In the five models (T-LGL, CACC, AD, IL-6, and

CASCADE 3.0), iFVS-ABN succeeded to finish the computation in

reasonable time. The running time of iFVS-ABN is comparable to

that of AEON for the T-LGL, CACC, AD, and IL-6 models. In partic-

ular, iFVS-ABN only took 969.20s for computing all the attractors

of the CASCADE 3.0 model, whereas all CABEAN, AEON, PyBool-

Net, and pystablemotifs failed. Like these methods, iFVS-ABN also

failed to finish the computation within the time limit for the CELL

CYCLE 2019 and SIPC models, the two most complex ones. We

3
As the authors usually use in their benchmarks, we set this parameter as 20 in our

benchmarks.

BCB ’22, August 7–10, 2022, Northbrook, IL, USA Van-Giang Trinh, Kunihiko Hiraishi, and Belaid Benhamou

Table 1: Structure information of the real-world models. Columns 2-6 denote the number of nodes, the number of edges, the
average connectivity, the number of source nodes, and the size of the largest SCC of each model, respectively. Columns 7-8
denote the sizes of the NFVSs computed by iFVS-ABN and mtsNFVS for each model, respectively.

smallest NFVS size

Model # nodes # edges avg. con. # source nodes largest SCC size iFVS-ABN mtsNFVS

T-LGL 61 193 3.16 7 43 20 13

CACC 70 153 2.19 1 65 13 10

AD 77 206 2.68 1 72 16 11

IL-6 86 164 1.91 15 38 10 4

CELL CYCLE 2019 87 375 4.31 1 57 32 26

SIPC 133 449 3.38 11 100 29 13

CASCADE 3.0 183 603 3.30 0 176 27 19

Table 2: Timing comparisons among attractor detection methods on the selected real-world models. Columns 2-3 denote the
numbers of fixed points and cyclic attractors of each model, respectively. The computational time is in seconds. "N/A" denotes
a run-time error; in this case, the number inside the parentheses shows the time when encountering the error. "DNF" means
that the method did not finish the attractor computation within 10 hours.

Model # fixed points # cyclic CABEAN AEON PyBoolNet pystablemotifs iFVS-ABN mtsNFVS

T-LGL 172 146 N/A (2176.55) 80.93 DNF 2267.40 547.17 8.16

CACC 2 8 N/A (21264.55) 469.38 DNF 16459.35 2898.34 1.96

AD 0 2 N/A (41.00) 5646.10 DNF 626.71 84.28 3.54

IL-6 28762 4096 N/A (19.68) 3625.36 DNF DNF 2881.75 82.68

CELL CYCLE 2019 8 0 DNF DNF DNF DNF DNF 80.48

SIPC 640 2120 N/A (399.19) DNF DNF DNF DNF 1768.35

CASCADE 3.0 0 1 N/A (5039.31) DNF DNF DNF 969.20 10.10

observed that iFVS-ABN even failed to compute the candidate set 𝐹

within the time limit for these models. The reason may be that the

NFVS computed by iFVS-ABN is large (see Table 1) and the Boolean

functions are complex, leading to too many candidate states that

are unmanageable by the SAT-based approach for computing fixed

points of the reduced STG [17].

mtsNFVS. Our proposed method succeeded to finish the compu-

tation within the time limit for all the seven models. The running

time for each model (except SIPC) is very short (less than two min-

utes). In the SIPC model, the running time is longer because this

model has many minimal trap spaces and in most of them mtsNFVS

had to proceed Preprocessing SSF to get the optimal case (i.e., the

number of candidates in the minimal trap space is one). The IL-6

model has more minimal trap spaces but in all of them the number

of candidates is already one and mtsNFVS did not need to proceed

Preprocessing SSF. Hence, the running time of mtsNFVS for the

IL-6 model is much less than that for the SIPC model. In particular,

among the considered methods only mtsNFVS can fully analyze

the CELL CYCLE 2019 and SIPC models, the two most complex

ones. We note that the number of attractors computed by mtsNFVS

is identical to the number of minimal trap spaces for all the seven

models. One can argue that using PyBoolNet [23] is also enough for

these models. However, PyBoolNet cannot anticipate the case and

it always needs to verify the resulting approximations. Moreover,

even when the number of attractors equals the number of minimal

trap spaces, the result of PyBoolNet still may be incorrect due to

random walks [23]. The above experimental results confirm the

accuracy advantage of mtsNFVS as compared to PyBoolNet and

the time advantage of mtsNFVS as compared to iFVS-ABN (see the

last paragraph of Subsection 3.1).

Finally, we report several observations on the constituent tasks

of mtsNFVS. Regarding the computation of an NFVS, as compared

to iFVS-ABN, mtsNFVS computed smaller NFVSs in all the seven

models (see Table 1); leading to smaller candidate sets. This obser-

vation is evident for the usefulness of the algorithm [11] that we

use to compute an NFVS of the ABN (see Subsection 3.2). Regarding

the computation of the set of fixed points of the reduced STG and

the set of minimal trap spaces, mtsNFVS finished the computation

within very short time (less than one minute for all models except

SIPC). For the SIPC model, the computational time for computing

fixed points (resp. minimal trap spaces) is a bit longer (901.64s (resp.

238.05s)) because there are many fixed points (resp. minimal trap

spaces) as well as its Boolean functions are complex. This observa-

tion is evident for the usefulness of the ASP-based methods that we

use in mtsNFVS (see Subsections 3.3 and 3.2, respectively). Regard-

ing Preprocessing SSF, for all the seven models it always lead to the

best cases where mtsNFVS did not need to perform the reachability

analysis. In particular, the computational time of Preprocessing

SSF is very short (less than one minute for all models except SIPC).

For the SIPC model, the computational time for Preprocessing SSF

is a bit longer because the number of candidates is initially large

(|𝐹 | = 24800). For the IL-6 model, the number of candidates is larger

Computing Attractors of Large-Scale Asynchronous Boolean Networks Using Minimal Trap Spaces BCB ’22, August 7–10, 2022, Northbrook, IL, USA

(|𝐹 | = 32768). However, that number equals the number of minimal

trap spaces and mtsNFVS did not need to perform Preprocessing

SSF. Hence, the running time for the attractor computation of the IL-

6 model is much less than that of the SIPC model. This observation

is evident for the usefulness of Preprocessing SSF.

4.2 Experimental results on random models
We randomly generated a set of models by using Bool Net R pack-

age [29]. This set includes 𝑁 -𝐾 models [22] with network size

𝑛 ∈ {100, 150, 200, 250} and 𝐾 = 2 (i.e., each node has exactly 𝐾 = 2

input nodes). For each network size, 10 instances were generated

using the 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝐾𝑁𝑒𝑡𝑤𝑜𝑟𝑘 function. In total, we have

40 random 𝑁 -𝐾 models. We then applied the compared methods

to these models and recorded the number of failures (i.e., failed to

obtain the result within three hours) of each method. Other settings

are the same as those in Subsection 4.1.

Table 3: Number of failures on 𝑁 -𝐾 models.

Method n = 100 n = 150 n = 200 n = 250

CABEAN 10 10 10 10

AEON 2 10 10 10

PyBoolNet 10 10 10 10

pystablemotifs 9 9 10 10

iFVS-ABN 1 6 9 10

mtsNFVS 0 0 0 0

Table 3 shows the experimental results on 𝑁 -𝐾 models. From

these results, we obtained several observations similar to those

obtained in Subsection 4.1. More specifically, CABEAN and PyBool-

Net failed to compute attractors within the time limit for all the

models. AEON and pystablemotif can handle only a few models

for 𝑛 = 100 and their numbers of failures rapidly approach 10 for

larger 𝑛. Although iFVS-ABN is better, its number of failures drasti-

cally increases. For 𝑛 = 200, iFVS-ABN can handle only one model,

which is consistent with the observation presented in [17]. In the

case of mtsNFVS, it can handle all the models. Furthermore, the

number of failures of mtsNFVS is always less than that of other

methods in each network size. We also reported that the running

time of mtsNFVS in each model is always less than 800 seconds.

These observations show that mtsNFVS completely outperforms

all the other methods and it can handle large-scale models.

5 CONCLUSION AND FUTUREWORK
In this paper, we have proposed the novel method mtsNFVS for

computing all the attractors of an ABN. mtsNFVS exploits the

advantages of the efficient method for computing minimal trap

spaces of the ABN and the NFVS-based approach of iFVS-ABN. In

principle, similar to iFVS-ABN, mtsNFVS also relies on NFVSs and

the reducing dynamics to get a candidate set of states, then filters

out this set to compute attractors of the ABN. However, by using

minimal trap spaces mtsNFVS can open a chance to reach easy

cases for the reachability analysis in the filtering process, which are

generally unable in iFVS-ABN. To make the chance effective, we

have then proposed several algorithmic improvements to several

common constituent tasks between mtsNFVS and iFVS-ABN. These

improvements along with the use of minimal trap spaces are key

factors for the efficiency of mtsNFVS.

We tested the method on large and complex real-world Boolean

models as well as randomly generated models. The experimental

results show that mtsNFVS completely outperforms the state-of-

the-art method CABEAN and other previously notable methods. In

particular, mtsNFVS can handle the two most complex models of

the real-world model set, whereas all other methods cannot. Since

the analysis for these models was usually performed by using their

reduced versions due to the performance limitations of the existing

tools, the efficiency of mtsNFVS pushes the barrier of what was

previously possible in the field of systems biology.

In the future, we plan to conduct a more comprehensive compar-

ison among the existing methods for attractor detection in ABNs

(i.e., CABEAN, AEON, PyBoolNet, pystablemotifs, iFVS-ABN, and

mtsNFVS). To do this, we shall need to run experiments on more

real-world models as well as randomly generated models of larger

size. Note that mtsNFVS uses PyBoolNet and several other tools as

subroutines. Since the time complexity of such tools is unclear, it

is difficult to analyze the time complexity of mtsNFVS. Hence, we

leave the analysis of theoretical and/or practical time complexity

as future work. In addition, the processes of mtsNFVS for the set

of minimal trap spaces seem potentially to be paralleled. Hence, we

plan to investigate deeply the parallelization capability of mtsNFVS.

Finally, proposing heuristics to help Preprocessing SSF converge

more quickly is also a potential improvement to mtsNFVS.

REFERENCES
[1] Tatsuya Akutsu. 2018. Algorithms for analysis, inference, and control of Boolean

networks. World Scientific, Singapore.

[2] Tatsuya Akutsu, Morihiro Hayashida, and Takeyuki Tamura. 2009. Integer

programming-based methods for attractor detection and control of Boolean

networks. In Proceedings of the 48th IEEE Conference on Decision and Control, CDC
2009. IEEE. https://doi.org/10.1109/CDC.2009.5400017

[3] Reka Albert and Juilee Thakar. 2014. Boolean modeling: a logic-based dynamic

approach for understanding signaling and regulatory networks and for making

useful predictions. Wiley Interdiscip. Rev. Syst. Biol. Med. 6, 5 (2014), 353–369.
https://doi.org/10.1002/wsbm.1273

[4] Jonas Béal, Lorenzo Pantolini, Vincent Noël, Emmanuel Barillot, and Laurence

Calzone. 2021. Personalized logical models to investigate cancer response to

BRAF treatments in melanomas and colorectal cancers. PLoS Comput. Biol. 17, 1
(2021). https://doi.org/10.1371/journal.pcbi.1007900

[5] Nikola Benes, Lubos Brim, Jakub Kadlecaj, Samuel Pastva, and David Safránek.

2020. AEON: Attractor Bifurcation Analysis of Parametrised Boolean Networks.

In International Conference on Computer Aided Verification. Springer, 569–581.
https://doi.org/10.1007/978-3-030-53288-8_28

[6] Nikola Benes, Lubos Brim, Samuel Pastva, and David Safránek. 2021. Computing

Bottom SCCs Symbolically Using Transition Guided Reduction. In International
Conference on Computer Aided Verification. Springer, 505–528. https://doi.org/10.

1007/978-3-030-81685-8_24

[7] Célia Biane and Franck Delaplace. 2019. Causal Reasoning on Boolean Control

Networks Based onAbduction: Theory andApplication to Cancer DrugDiscovery.

IEEE ACM Trans. Comput. Biol. Bioinform. 16, 5 (2019), 1574–1585. https://doi.

org/10.1109/TCBB.2018.2889102

[8] Claudine Chaouiya, Aurélien Naldi, and Denis Thieffry. 2011. Logical Modelling

of Gene Regulatory Networks with GINsim. In Bacterial Molecular Networks.
Springer New York, 463–479. https://doi.org/10.1007/978-1-61779-361-5_23

[9] Thomas Chatain, Stefan Haar, Juraj Kolcák, Loïc Paulevé, and Aalok Thakkar.

2020. Concurrency in Boolean networks. Nat. Comput. 19, 1 (2020), 91–109.

https://doi.org/10.1007/s11047-019-09748-4

[10] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In

International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[11] Philippe Galinier, Eunice Lemamou, and Mohamed Wassim Bouzidi. 2013. Ap-

plying local search to the feedback vertex set problem. J. Heuristics 19, 5 (June
2013), 797–818. https://doi.org/10.1007/s10732-013-9224-z

https://doi.org/10.1109/CDC.2009.5400017
https://doi.org/10.1002/wsbm.1273
https://doi.org/10.1371/journal.pcbi.1007900
https://doi.org/10.1007/978-3-030-53288-8_28
https://doi.org/10.1007/978-3-030-81685-8_24
https://doi.org/10.1007/978-3-030-81685-8_24
https://doi.org/10.1109/TCBB.2018.2889102
https://doi.org/10.1109/TCBB.2018.2889102
https://doi.org/10.1007/978-1-61779-361-5_23
https://doi.org/10.1007/s11047-019-09748-4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10732-013-9224-z

BCB ’22, August 7–10, 2022, Northbrook, IL, USA Van-Giang Trinh, Kunihiko Hiraishi, and Belaid Benhamou

[12] Abhishek Garg, Alessandro Di Cara, Ioannis Xenarios, Luis Mendoza, and Gio-

vanni De Micheli. 2008. Synchronous versus asynchronous modeling of gene

regulatory networks. Bioinform. 24, 17 (2008), 1917–1925. https://doi.org/10.

1093/bioinformatics/btn336

[13] Abhishek Garg, Ioannis Xenarios, Luis Mendoza, and Giovanni De Micheli. 2007.

An Efficient Method for Dynamic Analysis of Gene Regulatory Networks and

in silico Gene Perturbation Experiments. In Annual International Conference on
Research in Computational Molecular Biology. Springer, 62–76. https://doi.org/10.

1007/978-3-540-71681-5_5

[14] Carlos Gershenson. 2004. Introduction to random Boolean networks. In Pro-
ceedings of the Ninth International Conference on the Simulation and Synthesis of
Living Systems (ALife IX). MIT Press, 160–173.

[15] Trinh Van Giang and Kunihiko Hiraishi. 2020. An efficient method for approx-

imating attractors in large-scale asynchronous Boolean models. In 2020 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 1820–
1826. https://doi.org/10.1109/BIBM49941.2020.9313230

[16] Trinh Van Giang and Kunihiko Hiraishi. 2020. A Study on Attractors of General-

ized Asynchronous Random Boolean Networks. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. 103-A, 8 (2020), 987–994. https://doi.org/10.1587/transfun.

2019EAP1163

[17] Trinh Van Giang and Kunihiko Hiraishi. 2021. An Improved Method for Finding

Attractors of Large-Scale Asynchronous Boolean Networks. In 2021 IEEE Confer-
ence on Computational Intelligence in Bioinformatics and Computational Biology
(CIBCB). IEEE, 1–9. https://doi.org/10.1109/CIBCB49929.2021.9562947

[18] Inman Harvey and Terry Bossomaier. 1997. Time out of joint: Attractors in

asynchronous random Boolean networks. In Proceedings of the Fourth European
Conference on Artificial Life. Citeseer, 67–75.

[19] Sui Huang. 2001. Genomics, complexity and drug discovery: insights from

Boolean network models of cellular regulation. Pharmacogenomics 2, 3 (2001),
203–222. https://doi.org/10.1517/14622416.2.3.203

[20] Itziar Irurzun-Arana, José Martín Pastor, Iñaki F. Trocóniz, and José David Gómez-

Mantilla. 2017. Advanced Boolean modeling of biological networks applied to

systems pharmacology. Bioinform. 33, 7 (2017), 1040–1048. https://doi.org/10.

1093/bioinformatics/btw747

[21] David S Johnson and Michael R Garey. 1979. Computers and intractability: A
guide to the theory of NP-completeness. W. H. Freeman, New York.

[22] S.A. Kauffman. 1969. Metabolic stability and epigenesis in randomly constructed

genetic nets. J. Theor. Biol. 22, 3 (March 1969), 437–467. https://doi.org/10.1016/

0022-5193(69)90015-0

[23] Hannes Klarner and Heike Siebert. 2015. Approximating Attractors of Boolean

Networks by Iterative CTL Model Checking. Front. Bioeng. Biotechnol. 3 (Sept.
2015). https://doi.org/10.3389/fbioe.2015.00130

[24] Hannes Klarner, Adam Streck, and Heike Siebert. 2017. PyBoolNet: a python

package for the generation, analysis and visualization of Boolean networks.

Bioinform. 33, 5 (2017), 770–772. https://doi.org/10.1093/bioinformatics/btw682

[25] Junyan Lu, Hanlin Zeng, Zhongjie Liang, Limin Chen, Liyi Zhang, Hao Zhang,

Hong Liu, Hualiang Jiang, Bairong Shen, Ming Huang, Meiyu Geng, Sarah Spiegel,

and Cheng Luo. 2015. Network modelling reveals the mechanism underlying

colitis-associated colon cancer and identifies novel combinatorial anti-cancer

targets. Sci. Rep. 5, 1 (Oct. 2015). https://doi.org/10.1038/srep14739

[26] Andrzej Mizera, Jun Pang, Hongyang Qu, and Qixia Yuan. 2019. Taming Asyn-

chrony for Attractor Detection in Large Boolean Networks. IEEE ACM Trans.
Comput. Biol. Bioinform. 16, 1 (2019), 31–42. https://doi.org/10.1109/TCBB.2018.

2850901

[27] Arnau Montagud, Jonas Béal, Luis Tobalina, Pauline Traynard, Vigneshwari

Subramanian, Bence Szalai, Róbert Alföldi, László Puskás, Alfonso Valencia,

Emmanuel Barillot, Julio Saez-Rodriguez, and Laurence Calzone. 2021. Patient-

specific Boolean models of signaling networks guide personalized treatments.

(July 2021). https://doi.org/10.1101/2021.07.28.454126

[28] Marco Montalva, Julio Aracena, and Anahí Gajardo. 2008. On the complexity

of feedback set problems in signed digraphs. Electron. Notes Discrete Math. 30
(2008), 249–254. https://doi.org/10.1016/j.endm.2008.01.043

[29] Christoph Müssel, Martin Hopfensitz, and Hans A Kestler. 2010. BoolNet—an

R package for generation, reconstruction and analysis of Boolean networks.

Bioinform. 26, 10 (2010), 1378–1380.
[30] Aurélien Naldi, Pedro T. Monteiro, and Claudine Chaouiya. 2012. Efficient Han-

dling of Large Signalling-Regulatory Networks by Focusing on Their Core Con-

trol. In International Conference on Computational Methods in Systems Biology.
Springer, 288–306. https://doi.org/10.1007/978-3-642-33636-2_17

[31] Vincent Noël, Jose Carbonell, Miguel Ponce de Leon, Sylvain Soliman, Anna

Niarakis, Laurence Calzone, Emmanuel Barillot, Alfonso Valencia, and Arnau

Montagud. 2020. PhysiBoSS-COVID: the Boolean modelling of COVID-19 sig-

nalling pathways in a multicellular simulation framework allows for the uncov-

ering of mechanistic insights. https://doi.org/10.5281/zenodo.4266778

[32] Oyebode J. Oyeyemi, Oluwafemi Davies, David L. Robertson, and Jean-Marc

Schwartz. 2015. A logical model of HIV-1 interactions with the T-cell activation

signalling pathway. Bioinform. 31, 7 (2015), 1075–1083. https://doi.org/10.1093/

bioinformatics/btu787

[33] Jong-Chan Park, So-Yeong Jang, Dongjoon Lee, Jeongha Lee, Uiryong Kang,

Hongjun Chang, Haeng Jun Kim, Sun-Ho Han, Jinsoo Seo, Murim Choi,

Dong Young Lee, Min Soo Byun, Dahyun Yi, Kwang-Hyun Cho, and Inhee Mook-

Jung. 2021. A logical network-based drug-screening platform for Alzheimer’s

disease representing pathological features of human brain organoids. Nat. Com-
mun. 12, 1 (Jan. 2021). https://doi.org/10.1038/s41467-020-20440-5

[34] Loïc Paulevé and Adrien Richard. 2012. Static analysis of Boolean networks based

on interaction graphs: A survey. Electron. Notes Theor. Comput. Sci. 284 (2012),
93–104. https://doi.org/10.1016/j.entcs.2012.05.017

[35] Jordan C Rozum, Dávid Deritei, Kyu Hyong Park, Jorge Gómez Tejeda Zañudo,

and Réka Albert. 2021. pystablemotifs: Python library for attractor identification

and control in Boolean networks. Bioinform. (2021). https://doi.org/10.1093/

bioinformatics/btab825

[36] Jordan C. Rozum, Jorge Gómez Tejeda Zañudo, Xiao Gan, Dávid Deritei, and

Réka Albert. 2021. Parity and time reversal elucidate both decision-making in

empirical models and attractor scaling in critical Boolean networks. Sci. Adv. 7,
29 (July 2021). https://doi.org/10.1126/sciadv.abf8124

[37] Anke Ryll, Regina Samaga, Fred Schaper, Leonidas G. Alexopoulos, and Steffen

Klamt. 2011. Large-scale network models of IL-1 and IL-6 signalling and their

hepatocellular specification. Mol. Biosyst. 7, 12 (2011), 3253. https://doi.org/10.

1039/C1MB05261F

[38] Assieh Saadatpour, István Albert, and Réka Albert. 2010. Attractor analysis of

asynchronous Boolean models of signal transduction networks. J. Theor. Biol.
266, 4 (Oct. 2010), 641–656. https://doi.org/10.1016/j.jtbi.2010.07.022

[39] Julian D Schwab, Silke D Kühlwein, Nensi Ikonomi, Michael Kühl, and Hans A

Kestler. 2020. Concepts in Boolean network modeling: What do they all mean?

Comput. Struct. Biotechnol. J. 18 (2020), 571–582. https://doi.org/10.1016/j.csbj.

2020.03.001

[40] Shubhank Sherekar andGaneshAViswanathan. 2021. Boolean dynamicmodeling

of cancer signaling networks: Prognosis, progression, and therapeutics. Comput.
Syst. Oncol. 1, 2 (2021), e1017. https://doi.org/10.1002/cso2.1017

[41] Herbert Sizek, Andrew Hamel, Dávid Deritei, Sarah Campbell, and Erzsé-

bet Ravasz Regan. 2019. Boolean model of growth signaling, cell cycle and

apoptosis predicts the molecular mechanism of aberrant cell cycle progression

driven by hyperactive PI3K. PLOS Comput. Biol. 15, 3 (March 2019), e1006402.

https://doi.org/10.1371/journal.pcbi.1006402

[42] Thomas Skodawessely and Konstantin Klemm. 2011. Finding attractors in

Asynchronous Boolean Dynamics. Adv. Complex Syst. 14, 3 (2011), 439–449.

https://doi.org/10.1142/S0219525911003098

[43] Cui Su and Jun Pang. 2021. Cabean 2.0: Efficient and Efficacious Control of

Asynchronous Boolean Networks. In International Symposium on Formal Methods.
Springer, 581–598. https://doi.org/10.1007/978-3-030-90870-6_31

[44] Cui Su, Jun Pang, and Soumya Paul. 2021. Towards Optimal Decomposition

of Boolean Networks. IEEE ACM Trans. Comput. Biol. Bioinform. 18, 6 (2021),

2167–2176. https://doi.org/10.1109/TCBB.2019.2914051

[45] René Thomas. 1973. Boolean formalization of genetic control circuits. J. Theor.
Biol. 42, 3 (Dec. 1973), 563–585. https://doi.org/10.1016/0022-5193(73)90247-6

[46] G. V. Trinh, T. Akutsu, and K. Hiraishi. 2020. An FVS-based Approach to Attrac-

tor Detection in Asynchronous Random Boolean Networks. IEEE/ACM Trans.
Comput. Biol. Bioinf. (2020). https://doi.org/10.1109/TCBB.2020.3028862 in press.

[47] Eirini Tsirvouli, Vasundra Touré, Barbara Niederdorfer, Miguel Vázquez, Åsmund

Flobak, and Martin Kuiper. 2020. A Middle-Out Modeling Strategy to Extend a

Colon Cancer Logical Model Improves Drug Synergy Predictions in Epithelial-

Derived Cancer Cell Lines. Front. Mol. Biosci. 7 (Oct. 2020). https://doi.org/10.

3389/fmolb.2020.502573

[48] Arash Vahidi. 2003. JDD: a pure Java BDD and Z-BDD library. https://bitbucket.

org/vahidi/jdd.

[49] José C. Valverde, Henning S. Mortveit, Carlos Gershenson, and Yongtang Shi.

2020. Boolean Networks and Their Applications in Science and Engineering.

Complex. 2020 (2020), 6183798:1–6183798:3. https://doi.org/10.1155/2020/6183798
[50] Alan Veliz-Cuba, Boris Aguilar, Franziska Hinkelmann, and Reinhard Lauben-

bacher. 2014. Steady state analysis of Boolean molecular network models via

model reduction and computational algebra. BMC Bioinform. 15, 1 (June 2014).
https://doi.org/10.1186/1471-2105-15-221

[51] Jorge GT Zañudo and Réka Albert. 2013. An effective network reduction approach

to find the dynamical repertoire of discrete dynamic networks. Chaos 23, 2 (2013),
025111. https://doi.org/10.1063/1.4809777

[52] R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, and

T. P. Loughran. 2008. Network model of survival signaling in large granular

lymphocyte leukemia. Proceedings of the National Academy of Sciences 105, 42
(Oct. 2008), 16308–16313. https://doi.org/10.1073/pnas.0806447105

[53] Desheng Zheng, Guowu Yang, Xiaoyu Li, Zhicai Wang, Feng Liu, and Lei He. 2013.

An efficient algorithm for computing attractors of synchronous and asynchronous

Boolean networks. PloS One 8, 4 (2013), e60593. https://doi.org/10.1371/journal.

pone.0060593

https://doi.org/10.1093/bioinformatics/btn336
https://doi.org/10.1093/bioinformatics/btn336
https://doi.org/10.1007/978-3-540-71681-5_5
https://doi.org/10.1007/978-3-540-71681-5_5
https://doi.org/10.1109/BIBM49941.2020.9313230
https://doi.org/10.1587/transfun.2019EAP1163
https://doi.org/10.1587/transfun.2019EAP1163
https://doi.org/10.1109/CIBCB49929.2021.9562947
https://doi.org/10.1517/14622416.2.3.203
https://doi.org/10.1093/bioinformatics/btw747
https://doi.org/10.1093/bioinformatics/btw747
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.3389/fbioe.2015.00130
https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.1038/srep14739
https://doi.org/10.1109/TCBB.2018.2850901
https://doi.org/10.1109/TCBB.2018.2850901
https://doi.org/10.1101/2021.07.28.454126
https://doi.org/10.1016/j.endm.2008.01.043
https://doi.org/10.1007/978-3-642-33636-2_17
https://doi.org/10.5281/zenodo.4266778
https://doi.org/10.1093/bioinformatics/btu787
https://doi.org/10.1093/bioinformatics/btu787
https://doi.org/10.1038/s41467-020-20440-5
https://doi.org/10.1016/j.entcs.2012.05.017
https://doi.org/10.1093/bioinformatics/btab825
https://doi.org/10.1093/bioinformatics/btab825
https://doi.org/10.1126/sciadv.abf8124
https://doi.org/10.1039/C1MB05261F
https://doi.org/10.1039/C1MB05261F
https://doi.org/10.1016/j.jtbi.2010.07.022
https://doi.org/10.1016/j.csbj.2020.03.001
https://doi.org/10.1016/j.csbj.2020.03.001
https://doi.org/10.1002/cso2.1017
https://doi.org/10.1371/journal.pcbi.1006402
https://doi.org/10.1142/S0219525911003098
https://doi.org/10.1007/978-3-030-90870-6_31
https://doi.org/10.1109/TCBB.2019.2914051
https://doi.org/10.1016/0022-5193(73)90247-6
https://doi.org/10.1109/TCBB.2020.3028862
https://doi.org/10.3389/fmolb.2020.502573
https://doi.org/10.3389/fmolb.2020.502573
https://bitbucket.org/vahidi/jdd
https://bitbucket.org/vahidi/jdd
https://doi.org/10.1155/2020/6183798
https://doi.org/10.1186/1471-2105-15-221
https://doi.org/10.1063/1.4809777
https://doi.org/10.1073/pnas.0806447105
https://doi.org/10.1371/journal.pone.0060593
https://doi.org/10.1371/journal.pone.0060593

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Boolean networks and their attractors
	2.2 Interaction graphs
	2.3 Minimal trap spaces

	3 New method
	3.1 Main idea
	3.2 Computing negative feedback vertex sets and minimal trap spaces
	3.3 Computing fixed points of the reduced state transition graph
	3.4 Improving Preprocessing SSF

	4 Evaluation
	4.1 Experimental results on real-world models
	4.2 Experimental results on random models

	5 Conclusion and Future Work
	References

