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Correctness
In this section, we formally prove Theorem 1 in the main
text that represents the correctness of the proposed ASP en-
coding. We first define a Boolean Constraint Satisfiability
Problem (CSP) as follows.
Definition 1. Given a BN N = (V, F ), the Boolean CSP
C(N ) is the triple (R,D,C) where
• R = {pi | vi ∈ V } ∪ {ni | vi ∈ V }, i.e., we have two

variables for each node in V ;
• D(p) = B for all p ∈ R, i.e., the variables are all

Boolean;
• C includes the following constraints for each vi ∈ V :

– C1
i : pi ∨ ni = 1;

– C2
i : f̂i = 1 → pi = 1, where f̂i =

NNF(fi) |(p1/v1,n1/¬v1),...,(pn/vn,nn/¬vn);

– C3
i : ¬̂fi = 1 → ni = 1, where ¬̂fi =

NNF(¬fi) |(p1/v1,n1/¬v1),...,(pn/vn,nn/¬vn).

We writem(vi) ≥ fi[m] iff for any trap spacem, we have
that if fi[m] can receive only 1 then m(vi) = 1 or m(vi) =
?, if fi[m] can receive only 0 then m(vi) = 0 or m(vi) = ?,
and if fi[m] can receive both 0 and 1 (e.g., fi[m] = v1) then
m(vi) = ?. Clearly, by the characterization of trap spaces,
m is a trap space of N iff m(vi) ≥ fi[m] for every vi ∈ V .
Lemma 1. Let N = (V, F ) be a BN and C(N ) be the
Boolean CSP of N following Definition 1. If both NNF(fi)
and NNF(¬fi) are safe for all vi ∈ V , then C(N ) is sat-
isfied by a valuation r iff m is a trap space of N where for
every vi ∈ V we have

m(vi) = 1 iff r(pi) = 1 ∧ r(ni) = 0,

m(vi) = 0 iff r(pi) = 0 ∧ r(ni) = 1,

m(vi) = ? iff r(pi) = 1 ∧ r(ni) = 1.

Proof. “⇒” If r is a satisfying valuation of C(N ), then m
is a trap space of N .

For every node vi ∈ V , we have all three cases as follows.
First, r(pi) = r(ni) = 1, implying m(vi) = ?, leading to
m(vi) ≥ fi[m] directly holds. Second, r(pi) = 1∧ r(ni) =
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0, implying m(vi) = 1. Since C3
i holds, we must have

¬̂fi(r) = 0, since r(ni) = 0. Recall that ¬̂fi has no nega-
tion following Definition 1. Clearly if NNF(¬fi)[m] can re-
ceive 1 then ¬̂fi(r) always receives 1, thus NNF(¬fi)[m] =
0 must hold. Now, we have ¬fi[m] = 0 because NNF(¬fi)
and ¬fi are logically equivalent, implying fi[m] = 1, hence
m(vi) ≥ fi[m] still holds. Third, r(pi) = 0 ∧ r(ni) = 1.
Similar to the second case but considering f̂i, we obtain that
m(vi) ≥ fi[m] still holds. Overall, we can conclude that m
is a trap space of N . Note that in the forward direction, the
safeness is not really relevant.

“⇐” If m is a trap space of N , then r is a satisfying val-
uation of C(N ).

For every node vi ∈ V , we have all three cases as fol-
lows. First, m(vi) = ?, implying r(pi) = r(ni) = 1, lead-
ing to all the constraints of C(N ) directly hold. Second,
m(vi) = 1, implying r(pi) = 1 ∧ r(ni) = 0, leading to
constraints C1

i and C2
i hold. Since m is a trap space, we

have m(vi) ≥ fi[m], implying fi[m] = 1 or equivalently
¬fi[m] = 0. Then NNF(¬fi)[m] = 0 because NNF(¬fi)
and ¬fi are logically equivalent. Recall that ¬̂fi has no
negation following Definition 1. For each input variable vj
of fi, we have all three cases: r(pj) = 1 ∧ r(nj) = 0,
r(pj) = 0∧ r(nj) = 1, and r(pj) = 1∧ r(nj) = 1. We can
see that the first and second cases clearly do not affect the
equivalence between ¬̂fi(r) and NNF(¬fi)[m]. In contrast,
the third case raises a problem if NNF(¬fi) is unsafe. How-
ever, since NNF(¬fi) is safe, NNF(¬fi)[m] cannot produce
the formula in form of vj ∧ ¬vj that is equal to 0, leading
to valuation r really makes ¬̂fi equal to 0. Now, we have
¬̂fi(r) = 0, hence C3

i holds. Third, m(vi) = 0, imply-
ing r(pi) = 0 ∧ r(ni) = 1. Similar to the second case but
considering the safeness of NNF(fi), we obtain that all the
constraints of C(N ) still hold. Overall, r is a satisfying val-
uation of C(N ).

Lemma 2. Any satisfying valuation of C(N ) (hence any
trap space of N ) is represented by a Herbrand model of L.
In addition, any Herbrand model represents a satisfying val-
uation (hence a trap space), but multiple ones may represent
the same satisfying valuation (hence the same trap space).

Proof. It is easy to see thatL has no negation and is logically



equivalent to the propositional formula characterizing the
conjunction of all constraints of C(N ) via the introduction
of some existentially quantified auxk. Hence, for any satis-
fying valuation r of C(N ), we always have a corresponding
Herbrand model I of L such that pi ∈ I iff r(pi) = 1 and
ni ∈ I iff r(ni) = 0, for all vi ∈ V . We also have a cor-
responding satisfying valuation r for any Herbrand model I
such that r(pi) = 1 iff pi ∈ I and r(ni) = 1 iff ni ∈ I .
However, due to the introduction of some auxiliary atoms
auxk in L, there may be other Herbrand models of L such
that they all represent r. Such Herbrand models and also I
have the same main atoms (pi and ni) and only differ in
auxiliary atoms (auxk). Since trap spaces of N one-to-one
correspond to satisfying valuations of C(N ) by Lemma 1,
we have the similar relation between trap spaces of N and
Herbrand models of L.

By Lemma 2, any trap space ofN is represented by a Her-
brand model of L. Hence, we define a recovering function
γ : S?N 7→ 2A such that γ(m) includes the set of main atoms
corresponding to trap space m and only the auxiliary atoms
that are derived from these main atoms following the ASP
rules of L. Recall that A is the set of atoms of the encoded
logic program L of N . We can easily see that γ(m) is the
smallest set of atoms corresponding to trap spacem. Also by
Lemma 2, any Herbrand model of L represents a trap space
of N . Hence, we define a projection function π : 2A 7→ S?N
such that π(I) is the trap space represented by the set of
main atoms in Herbrand model I . Note that multiple Is may
have the same projection.

Lemma 3. For two any trap spaces m1 and m2 of N , if
m1 < m2, then γ(m1) ⊂ γ(m2).

Proof. Let M1 and T1 be the set of main atoms correspond-
ing to m1 and the set of auxiliary atoms derived from M1,
respectively. Let M2 and T2 be the set of main atoms corre-
sponding to m2 and the set of auxiliary atoms derived from
M2, respectively. Since m1 < m2, M1 ⊂ M2 by the corre-
spondence between a Herbrand model of L and a trap space
of N . Consequently, T1 ⊆ T2 because L is positive. Since
γ(m1) =M1 ∪T1 and γ(m2) =M2 ∪T2, we can conclude
γ(m1) ⊂ γ(m2).

Theorem 1. Let N = (V, F ) be a BN and L be its encoded
logic program. If both NNF(fi) and NNF(¬fi) are safe for
all vi ∈ V , then the set of stable models of L one-to-one
corresponds to the set of minimal trap spaces of N .

Proof. Recall that the logic program L is disjunctive and
positive. Hence, the set of stable models of L is equivalent
to the set of subset-minimal (⊂-minimal) Herbrand models
of L (Przymusinski 1991).

“⇒” If I is a stable model of L, then π(I) is a minimal
trap space of N .

Assume that π(I) is not a minimal trap space ofN . Then
there exists another trap space m of N such that m < π(I).
By Lemma 3, γ(m) ⊂ γ(π(I)). Recall that γ(π(I)) is
the smallest set of atoms corresponding to trap space π(I).

Hence γ(π(I)) = I , leading to γ(m) ⊂ I , which is a con-
tradiction because I is a ⊂-minimal Herbrand model. Now,
we can derive that π(m) is a minimal trap space of N .

“⇐” If m is a minimal trap space of N , then γ(m) is a
stable model of L.

Assume that γ(m) is not a stable model of L. Then there
exists another Herbrand model I of L such that I ⊂ γ(m).
We cannot have π(I) = m because γ(m) is the smallest set
of atoms corresponding to trap space m. Hence, π(I) < m,
which is a contradiction because m is a minimal trap space.
Now, we can derive that γ(m) is a stable model of L.

Experimental evaluation
This section provides an extended description of all the per-
formed experiments, their results, and the overall experi-
mental setup.

Hardware and experiment configuration
Since our evaluation is primarily concerned with real-world
performance, we first describe the exact hardware which
was used to measure the presented results. Naturally, run-
time measured on other hardware will differ. However, our
configuration is fairly representative of a typical “mid-level”
desktop available at the time of writing.

All experiments are performed using an 8-core Ryzen
5800X CPU fixed at 4.7Ghz (i.e. any turbo or overclocking
is disabled to increase run-to-run consistency). The system
is equipped with 128GB of DDR4-3200 memory at CAS la-
tency of 18 cycles. The experiments are performed using a
Debian 12 virtual machine such that each experiment is lim-
ited to approx. 64GB of RAM.

All compared tools are available as Python libraries. As
such, our artifact1 provides a Python virtual environment
with all tools installed and configured (compatible with De-
bian 12), as well as the instructions and scripts for setting up
this environment from scratch.

Experiments run sequentially (i.e. they do not compete
for resources) and in general all use a single core (this is not
limited in any way, it is simply the nature of the employed
tools). The runtime is measured internally by each experi-
ment script (i.e. it does not count the overhead of starting
the Python interpreter), but otherwise includes all steps of
the computation (e.g. loading the model, any conversions,
transformations, or encoding, etc.).

Run-to-run consistency We have measured the run-to-
run variance of each tool on a smaller subset of bench-
marks. We observed only minimal differences: <0.1s for
very short benchmarks (i.e. faster than 1s) and less than 5%
of the runtime on longer running instances (details of the
measurements are given in the artifact). Since our main con-
clusions are based on runtimes much larger than 1s, and we
test runtime across many benchmark models, each measure-
ment is taken only once to reduce the total runtime of the
benchmark suite (even at this point, the full benchmark suite

1https://zenodo.org/doi/10.5281/zenodo.10405520



runs for more than a week). For systems with higher run-
to-run variance (e.g. laptops), the artifact supports reporting
each experiment as an average of multiple repetitions.

Compared tools
We test a variety of tools which support the enumeration of
trap spaces in BNs. In particular:
• Package pyboolnet is a tool based on (Klarner, Streck,

and Siebert 2017). It computes trap spaces using prime
implicants. We use the version 3.0.11.2

• Package mpbn is a tool based on (Paulevé et al. 2020).
It computes trap spaces of locally-monotonic models by
direct ASP encoding. We use the version 1.7.3

• Package trappist is a tool based on (Trinh et al.
2022). It provides a method for enumerating trap spaces
based on Petri net siphons with ASP. We use the version
0.8.4

• Package trapmvn is a tool presented in (Trinh et al.
2023). It iterates on trappist by adding heuristics
which improve the Petri net encoding process. We use
the latest version available on Github.5

• Package tsconj is the tool presented in this paper.
All these tools support enumeration of minimal trap

spaces. To also test computation of maximal trap spaces, we
have carefully introduced this feature into the packages that
do not support it explicitly (i.e. trappist and mpbn). The
source code of all tested packages, including our modifica-
tions, is available as part of the artifact.

Tested models
We test the tools on a wide range of real-world and synthetic
models. In particular, we use:

Biodivine Boolean Models (BBM) The BBM reposi-
tory (Pastva et al. 2023) provides a wide variety of published
biologically relevant Boolean models. Here, we use the Au-
gust 2022 edition6 which consists of 212 models, ranging up
to 321 variables and 1100 regulations.

Manually selected models To supplement the BBM
dataset, we also performed a separate survey of related liter-
ature and found 39 additional biologically relevant models.
A summary of these models, ranging up to 3158 variables,
is given in Tables 1 and 2.

2https://github.com/hklarner/pyboolnet/releases/tag/3.0.11
3https://github.com/bnediction/mpbn/releases/tag/v1.7; Note

that newer versions of mpbn are available at the time of sub-
mission. However, version 2.0 does not modify the trap-space
detection method, hence we skip it in our testing. Furthermore,
very recently, version 3.0 was also published. However, the
changes in this version are not officially published or documented
yet. Due to this fact, and due to the relatively recent appearance of
this version, we were not able to include it in our experiments.

4https://github.com/soli/trap-spaces-as-siphons/releases/tag/
v0.8.0

5https://github.com/giang-trinh/trap-mvn/commit/
69cc3cb5c8d7eb5db2cdf6add492f133cbedf3f9

6https://github.com/sybila/biodivine-boolean-models/releases/
tag/august-2022

Very Large Boolean Networks (VLBN) The VLBN
dataset7 provides 28 random BNs with scale-free topology
and inhibitor-dominant update functions. The models range
up to 100.000 variables. They are very large, but have rather
simple locally-monotonic update functions.

Manually generated models To supplement the VLBN
dataset, we also generated 400 random BNs based on the
generator provided in (Benes et al. 2021), ranging from 1000
to 5000 variables. This generator uses a degree distribution
based on the BBM dataset to sample the network topology.
For update functions, it samples from a subset of nested-
canalizing locally-monotonic functions. Compared to the
VLBN dataset, we thus cover a smaller range of sizes, but
a wider range of update functions.

Complete results for minimal trap spaces
First, we test the enumeration of minimal trap spaces. Here,
we test the time required to compute the first minimal trap
space using each tool. Note that most models admit more
than one trap space. In extreme cases, there can be millions
or even billions of minimal trap spaces (although such situ-
ations are often biologically uninteresting in practice).

We find that enumerating many trap spaces often skews
the experiment towards measuring the efficiency of the enu-
meration procedure and not the actual problem-solving.
Hence, to control for this implementation aspect, we focus
on the time necessary to obtain the first result.

Summary table The summary of the measured results is
presented in Table 3. Here, we list the number of mod-
els for which a minimal trap space was found within the
listed time. The memory column lists the number of models
where the computation exceeded the memory limit of 64GB.
The time column lists the number of models where the
computation exceeded the time limit (10min for manually
generated random models, one hour for all other models).
Finally, the other column lists cases where the tool failed
for some other reason. Specifically, for mpbn, this gives the
number of non-locally-monotonic models in the dataset. For
trappist, the tool sometimes failed when exceeding the
recursion limit of the Python interpreter.

Summary figures To better visualize the performance
scaling of individual tools on the random models, we pre-
pared Figures 1 and 2. These figures show in detail how
many models can be computed by each tool until a cer-
tain timeout. We do not have such figures for the real-world
models, as the number of experiments running for more than
one second is quite small in these datasets. Finally, Figure 3
shows the relative speed-up of tsconj compared to the
other tools on all experiments (assuming both tools finished
the experiment).

Discussion: real-world models First, let us observe that
for both the BBM and the selected datasets, the differences
between tsconj and trappist (or trapmvn) are min-
imal. All completed the vast majority of models in <1s and

7https://doi.org/10.5281/zenodo.3714875



Table 1: Selected real-world models with < 200 variables. The table lists total variable count n, the number of source (i.e.
input) variables s, and the respective bibliographic reference.

No. Filename n s Source
1 metastatic melanoma 10 1 (Kadelka et al. 2020)
2 simplified p53 high dna damage 16 0 (Kadelka et al. 2020)
3 simplified p53 low dna damage 16 0 (Kadelka et al. 2020)
4 FT-GRN 23 5 (Chávez-Hernández et al. 2022)
5 DNA damage adaptation 26 1 (Kadelka et al. 2020)
6 Rho-family GTPases signaling 33 1 (Kadelka et al. 2020)
7 signaling-dependent-pluripotency 36 7 (Yachie-Kinoshita et al. 2018)
8 HOG example 43 5 (Romers and Krantz 2017)
9 Pancreatic Cancer 43 11 (Kadelka et al. 2020)
10 Drosophila 52 4 (Vega 2014)
11 mtor 59 0 (Hemedan, Schneider, and Ostaszewski 2023)
12 prkn mitophagy 59 38 (Hemedan, Schneider, and Ostaszewski 2023)
13 dopamine transcription 64 0 (Hemedan, Schneider, and Ostaszewski 2023)
14 hedgehog signaling pathway 65 28 (Kadelka et al. 2020)
15 foxo3 66 0 (Hemedan, Schneider, and Ostaszewski 2023)
16 ppargc1a 67 0 (Hemedan, Schneider, and Ostaszewski 2023)
17 EMT 69 8 (Rozum et al. 2021)
18 tca cycle 69 35 (Hemedan, Schneider, and Ostaszewski 2023)
19 Bcell 73 5 (Dutta et al. 2019)
20 Executable ... mast cell ... BCC 73 19 (Aghamiri et al. 2020)
21 Insulin example 82 7 (Romers and Krantz 2017)
22 pi3k akt 85 40 (Hemedan, Schneider, and Ostaszewski 2023)
23 Corral ThIL17diff 15jan2021 92 16 (Corral-Jara et al. 2021)
24 EMT Mechanosensing 136 4 (Sullivan et al. 2022)
25 macrophage polarization 136 17 (Kadelka et al. 2020)
26 sprouting angiogenesis 141 27 (Kadelka et al. 2020)
27 angiofull 142 28 (Weinstein et al. 2017)
28 EMT Mechanosensing TGFbeta 150 6 (Sullivan et al. 2022)
29 Executable ... MAPK model BCC 181 37 (Aghamiri et al. 2020)

Table 2: Selected real-world models with > 200 variables. The table lists total variable count n, the number of source (i.e.
input) variables s, and the respective bibliographic reference.

No. Name n s Source
1 Snf1 pathway 202 56 (Lubitz et al. 2015)
2 T-cell co-receptor molecules calcium channel 206 39 (Ganguli et al. 2015a)
3 YeastPheromoneModel 246 17 (Romers and Krantz 2017)
4 Mycobacterium tuberculosis 317 37 (Kadelka et al. 2020)
5 Leishmania 342 81 (Ganguli et al. 2015b)
6 Executable file for cholocystokinin model BCC 383 74 (Aghamiri et al. 2020)
7 ra map 447 125 (Singh et al. 2023)
8 CAF-model 463 62 (Aghakhani et al. 2023)
9 Executable file for Alzheimer model BCC 762 237 (Aghamiri et al. 2020)
10 Cell cycle control network 3158 61 (Romers and Krantz 2017)

do not add any new results beyond <1min. The only practi-
cal difference is that trapmvn resolves the recursion issue
in trappist and hence can solve three extra models. Sim-
ilarly, mpbn also produces almost all solutions in <1s (and
all in <1min), but is hindered by the lacking support for
non-locally-monotonic models. Finally, while pyboolnet
did not perform too poorly overall, it is clearly the slow-

est of the tested tools. Several models required much more
than one minute, and it has the highest number of timeouts
(8 in BBM and 6 in selected). Importantly, only tsconj
was able to solve all problems in the BBM dataset, but nei-
ther tool found solutions for three of the selected models. In
these three hard models, there are quite many very compli-
cated unsafe formulas that have many input variables and



contain many nested sub-formulas, which is however not
common in real-world models. That leads to a very big BDD
for such a formula (regardless of the variable ordering within
the BDD). We think this might be the source of hardness.

Discussion: random models For random models, the dif-
ferences between the tools are much more apparent. First,
as opposed to the smaller real-world models, trappist,
trapmvn and tsconj actually vastly differ in their per-
formance. Specifically, both trappist and trapmvn per-
form much worse than tsconj.

Here, the reason is the encoding process which uses
BDDs to list the implicants of individual BN transitions. In
larger models, the size of the BDD and the length of the im-
plicant list can be substantial. This prevents the tool from en-
coding the problem into a logic program, or produces a pro-
gram that is too large for the solver. The heuristics employed
by trapmvn to mitigate this problem are to some extent ef-
fective: it solves 20 VLBN models as opposed to just one
solved by trappist. In fact, for this dataset, it even out-
performs mpbn. However, ultimately, both trapmvn and
trappist are significantly outperformed by both tsconj
and mpbn on the larger random dataset which admits more
complex update functions.

When comparing tsconj to mpbn, the VLBN dataset
clearly demonstrates the superior scalability of tsconj.
Here, tsconj finished all models (most in <1min), while
mpbn struggles once the model size exceed 50.000 vari-
ables. To validate that this improvement is not due to the
limited scope of the VLBN dataset, we focus on the 400
generated random models. Here, both mpbn and tsconj
completed all models. However, tsconj finished all mod-
els in <1min, while mpbn needed more than one minute for
almost one hundred models (see also Figure 1). In fact, the
geometric mean speedup of tsconj compared to mpbn in
this dataset is 9.5× (1.6× min, 53.4× max). As such, our
experiments show that tsconj is on average an order of
magnitude better than mpbn in this setting.

Discussion: safe and unsafe formulas For all randomly
generated models, every formula is safe. We observed
that there are 138/251 (55%) real-world models containing
unsafe formulas. More specifically, there are 3618/20210
(18%) unsafe Boolean formulas in all the real-world models.
Overall, unsafe formulas are less common than safe ones,
which is consistent with the common assumption in systems
biology that the interactions between two components are
monotonic (Paulevé et al. 2020).

Discussion: distribution of number of minimal trap
spaces In general, the number of minimal trap spaces is
closely tied to the number of attractors in asynchronous
BNs. We are not aware of a study that would specifi-
cally target trap spaces, but the scaling of attractor count
with respect to the network size has been thoroughly stud-
ied (Rozum et al. 2021). In our specific dataset, we observed
that most real-world networks have only a small amount of
trap spaces. In particular, more than 90% of networks have
less than 10 minimal trap spaces.
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Figure 1: Cumulative minimal trap space experiments com-
pleted (y-axis) until a specific time point (x-axis, logarith-
mic). Concerns the 400 randomly generated models with
1.000-5.000 variables.
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Figure 2: Cumulative minimal trap space experiments com-
pleted (y-axis) until a specific time point (x-axis, logarith-
mic). Concerns the 28 VLBN models with 1.000-100.000
variables.



Table 3: Summary of tool performance when computing the first minimal trap space. Rows <1s, <1min and <1h give the
number of models completed within the respective time limit. Columns memory, time and other list the number of failed
experiments in each category. Detailed explanation of each failure type is given in the main text.

Biodivine Boolean Models

Method <1s <1min <1h memory time other

pyboolnet 161/212 194/212 203/212 1 8 0
mpbn 182/212 185/212 185/212 0 0 27

trappist 207/212 208/212 208/212 1 0 3
trapmvn 208/212 211/212 211/212 1 0 0
tsconj 208/212 212/212 212/212 0 0 0

Manually selected models

Method <1s <1min <1h memory time other

pyboolnet 17/39 26/39 33/39 0 6 0
mpbn 26/39 27/39 27/39 0 1 11

trappist 35/39 36/39 36/39 2 1 0
trapmvn 35/39 36/39 36/39 2 1 0
tsconj 35/39 36/39 36/39 1 2 0

Very Large Boolean Networks

Method <1s <1min <1h memory time other

pyboolnet 0/28 0/28 0/28 22 6 0
mpbn 0/28 7/28 18/28 0 10 0

trappist 0/28 1/28 1/28 0 27 0
trapmvn 0/28 9/28 20/28 5 3 0
tsconj 4/28 19/28 28/28 0 0 0

Manually generated models

Method <1s <1min <10min memory time other

pyboolnet 0/400 0/400 0/400 0 400 0
mpbn 3/400 303/400 400/400 0 0 0

trappist 0/400 4/400 24/400 144 232 0
trapmvn 0/400 34/400 103/400 100 197 0
tsconj 67/400 400/400 400/400 0 0 0
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Figure 3: The speed-up of tsconj compared to the other
tools on the minimal trap space problem, truncated to the
interval [ 14 , 64]. Points below the red line represent a slow-
down instead of a speed-up.

Complete results for maximal trap spaces
To provide a broader perspective on the performance of each
tool, we also investigate the problem of maximal trap spaces.
Note that (as mentioned), we had to modify trappist and
mpbn to enable this feature. However, this modification is
quite straightforward, since a simple adjustment of the logic
program is sufficient.

The experimental settings are identical to those for the
case of minimal trap space enumeration. The results are
summarised in Figures 4, 5 6, as well as Table 4.

Overall, the results are largely in-line with the results for
minimal trap spaces. However, in several instances the tools
perform better because the problem is generally easier. Fi-
nally, note that amongst the selected models, there is one ad-
ditional instance (?) where trappist and tsconj report
an error. This is because the model in question only has one
trap space, corresponding to the whole state space. In such
cases, the other tools return an empty result, but tsconj
and trappist fail with an error.
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Figure 4: Cumulative maximal trap space experiments com-
pleted (y-axis) until a specific time point (x-axis, logarith-
mic). Concerns the 400 randomly generated models with
1.000-5.000 variables.
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Figure 5: Cumulative maximal trap space experiments com-
pleted (y-axis) until a specific time point (x-axis, logarith-
mic). Concerns the 28 VLBN models with 1.000-100.000
variables.



Table 4: Summary of tool performance when computing the first maximal trap space. Rows <1s, <1min and <1h give the
number of models completed within the respective time limit. Columns memory, time and other list the number of failed
experiments in each category. Detailed explanation of each failure type is given in the main text.

Biodivine Boolean Models

Method <1s <1min <1h memory time other

pyboolnet 161/212 194/212 203/212 0 9 0
mpbn 182/212 185/212 185/212 0 0 27

trappist 207/212 208/212 208/212 0 1 3
trapmvn 208/212 211/212 211/212 0 1 0
tsconj 208/212 212/212 212/212 0 0 0

Manually selected models

Method <1s <1min <1h memory time other

pyboolnet 17/39 26/39 33/39 0 6 0
mpbn 26/39 27/39 27/39 0 1 11

trappist 34/39 35/39 35/39 0 3 1?

trapmvn 35/39 36/39 36/39 1 2 0
tsconj 34/39 35/39 35/39 1 2 1?

Very Large Boolean Networks

Method <1s <1min <1h memory time other

pyboolnet 0/28 0/28 0/28 22 6 0
mpbn 0/28 7/28 18/28 0 10 0

trappist 0/28 1/28 1/28 0 27 0
trapmvn 0/28 10/28 20/28 4 4 0
tsconj 4/28 16/28 28/28 0 0 0

Manually generated models

Method <1s <1min <1h memory time other

pyboolnet 0/400 0/400 0/400 0 400 0
mpbn 3/400 303/400 400/400 0 0 0

trappist 0/400 12/400 27/400 95 278 0
trapmvn 0/400 52/400 144/400 64 192 0
tsconj 32/400 400/400 400/400 0 0 0
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down instead of a speed-up.
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Álvarez-Buylla, E. R. 2022. The flowering transition path-
ways converge into a complex gene regulatory network that
underlies the phase changes of the shoot apical meristem in
Arabidopsis thaliana. Front. Plant Sci., 13: 852047.
Corral-Jara, K. F.; Chauvin, C.; Abou-Jaoudé, W.; Grand-
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