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Motivation

Boolean networks

Boolean Networks (BNs) are simple but efficient mathematical
formalism for modeling and analyzing complex biological
systems [Schwab et al., 2020].

I A BN includes n nodes; each node can receive either 0 or 1, and can be
associated with one Boolean function [Gershenson, 2004].

I Probabilistic Boolean Networks (PBNs) are a stochastic extension of
BNs where each node can be associated with one or more Boolean
functions, and each Boolean function has a probability for
selection [Shmulevich et al., 2002].

BNs and PBNs are interesting mathematical objects that have
recently attracted various work in theory [Schwab et al., 2020].

Furthermore, they have widely been applied to various areas from
science to engineering [Valverde et al., 2020].
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Motivation

Applications of BNs

Boolean networks

Systems biology
- Modeling and analysis of biological

systems [Karlebach and Shamir, 2008,
Sherekar and Viswanathan, 2021]
- Diseases research and drug de-
velopment [Ibrahim et al., 2021]

Engineering
- Smart grids [Rivera-Torres and Santiago, 2020]

- Manufacturing [Torres et al., 2018]
- Robotics [Roli and Braccini, 2018]

- Music generation [Gabriel and Stepney, 2018]

Computer science
- Information Theory [Gadouleau et al., 2016]

- Encryption [Wang and Gao, 2020]
- Satisfiability [Milano and Roli, 1999]

Complex systems
- Energy systems [Dong, 2017]

- Social networks [Green et al., 2007]
- Multivariate systems [Yang et al., 2021]

... and many other applications.
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Motivation

Classification of BNs

Updating schemes

Synchronous Asynchronous

Fully asyn-
chronous

Generalized
asynchronous

Deterministic
asynchronous

Synchronous
BNs (SBNs)

[Kauffman, 1969]

Synchronous
PBNs (SPBNs)

[Shmulevich et al., 2002]

Asynchronous
BNs (ABNs)

[Saadatpour et al., 2010]

Generalized Asyn-
chronous BNs (GABNs)

[Noual, 2011]

Deterministic Gener-
alized Asynchronous

BNs (DGABNs)
[Gershenson et al., 2003]

Deterministic
Asynchronous

PBNs (DA-PBNs)
[Faryabi et al., 2008b]

These typical types of BNs have been widely studied as well as found
various applications [Schwab et al., 2020].
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Motivation

Attractor detection and optimal control of BNs

Attractor detection and optimal control of BNs are difficult and interesting
in theory but also have a plenty of applications in many
areas [Akutsu, 2018].

In this research, we focus on the two above problems on BNs.
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Motivation

Attractor detection in BNs
An attractor of a BN is a set of states such that the BN cannot escape
from this set once entered it (the long-run dynamics).

Source: [Bornholdt, 2008]
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Motivation

Attractor detection in BNs (cont.)

Analysis of attractors could provide new insights into systems
biology [Albert and Thakar, 2014] (e.g., the origins of
cancers [Béal et al., 2021], SARS-CoV-2 [Ibrahim et al., 2021],
HIV [Oyeyemi et al., 2014]).

Attractors also play an important role in the development of new
drugs [Putnins and Androulakis, 2019].

Attractors of BNs have been also used to study various other systems,
such as, multivariate systems [Yang et al., 2021], complex
systems [Gates et al., 2021].
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Motivation

Optimal control of BNs
Optimal control of BNs is defined as the design of intervention strategies
(control policies) to beneficially alter the dynamics of the considered
system [Shmulevich and Dougherty, 2010].

Source: [Zhong et al., 2019]
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Motivation

Optimal control of BNs (cont.)

Since BNs are logical dynamical and highly non-linear systems,
control of BNs has become a hot topic in the control
community [Cheng and Qi, 2009].

It has been found in various applications in many areas, such as,
systems biology [Biane and Delaplace, 2018], fault detection of logic
circuits [Fornasini and Valcher, 2015], industry [Torres et al., 2018].

Note that attractor detection also gives a starting point for many
control approaches for biological systems [Biane and Delaplace, 2018].

Trinh Van Giang On Attractor Detection and Optimal Control of Boolean NetworksNovember 05, 2021 11 / 103



Motivation

Challenges in theories of BNs

There are very few studies exploring the relations in dynamics among
different types of BNs [Paulevé and Richard, 2012].

The dynamics of some types of BNs (e.g., DGABNs and DA-PBNs) is
not well-formulated.
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Motivation

Challenges in attractor detection of BNs

Many methods and tools have been proposed, but they are mainly
designed for SBNs, the simplest type of BNs.

Few methods and tools have been proposed for ABNs, the more
complex type of BNs but considered more suitable than SBNs in
modeling biological systems [Saadatpour et al., 2010].

The previous methods for attractor detection in ABNs, such as, the
BDD-based methods [Garg et al., 2008], the decomposition-based
methods [Mizera et al., 2018], are unable to handle large networks
(e.g., networks with more than 100 nodes).

In particular, there is the lack of practical methods for other more
complex types of BNs such as GABNs and DGABNs.
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Motivation

Challenges in optimal control of BNs

Many methods and tools have been proposed in recent years.
However, they are mainly designed for SBNs, ABNs, or especially
SPBNs.

Very few methods [Li and Li, 2021, Faryabi et al., 2008a] have been
proposed for optimal control of DGABNs or DA-PBNs; they are
impractical for large networks due to they require to compute
transition probability matrices of size exponential in n.

Moreover, although some of the proposed methods for optimal
control of SPBNs can avoid computing transition probability matrices
of exponential size [Kobayashi and Hiraishi, 2012a,
Kobayashi and Hiraishi, 2012b, Wei et al., 2017], they are still needed
to improve due to their applicable ranges are still limited to medium
problem instances [Akutsu, 2018].
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Motivation

Goal of this dissertation

In this dissertation, we aim to develop theories as well as efficient
methods for attractor detection and optimal control of different types

of BNs.
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Motivation

Why different types of BNs?

Each type of BNs has its part in real life and can be suitable for
modeling a specific type of systems; the choice among them in a
specific circumstance depends on the available data and
application [Faryabi et al., 2008a].

Relations in dynamics between different types of BNs can be exploited
to efficiently analyze BNs. For example, attractors of an SBN can be
used to efficiently find attractors of its ABN
counterpart [Garg et al., 2008].

This consideration may provide new theoretical insights into the
theory of BNs [Paulevé and Richard, 2012].
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Preliminaries

Boolean networks

Boolean Network (BN)

A Boolean Network (BN) is defined as a 2-tuple (V ,F ), where
V = {x1, ..., xn} (n ≥ 1) is the set of nodes and F = {f1, ..., fn} is the set
of Boolean functions. Each node xi is identified as a Boolean variable, and
is associated with a Boolean function fi : B|IN(fi )| → B, where IN(fi ) is the
set of input nodes of fi . xi (t) ∈ B and x(t) = (x1(t), ..., xn(t))> denote
the state of node xi and the state of the BN at time t, respectively.

In this research, BNs are implicitly considered as general BNs (i.e., there is
no restriction on Boolean functions).
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Preliminaries

Dynamics of BNs

Node xi can update its state by

xi (t + 1) = fi (x(t)).

Following the updating scheme, the BN transits from a state to
another state (possibly identical). This transition is called the state
transition.

Then, the dynamics of a BN can be represented by all possible states
of the BN along with all possible state transitions from each state.
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Preliminaries

Synchronous Boolean Networks (SBNs)

An SBN is the simplest BN model. At each time step, all its nodes
will update their values simultaneously.

Since the state transitions from a state of the SBN are time-invariant,
the whole dynamics of an SBN can be captured by a State Transition
Graph (STG).

An STG is a directed graph in which each node corresponds to a state
of the BN and each arc corresponds to a state transition between two
states (possibly identical).

The STG of an SBN of size n has 2n nodes and 2n arcs.
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Preliminaries

Asynchronous Boolean Networks (ABNs)

An ABN can be seen as the most popular BN model.

The updating scheme of an ABN is fully asynchronous. That is, at
each time step, a single node is selected uniformly at random to be
updated.

By this updating scheme, a state of the ABN has n outgoing state
transitions, making the dynamics of an ABN non-deterministic.

Like SBNs, the whole dynamics of an ABN can be also captured by
an STG. The STG of an ABN of size n has 2n nodes and n × 2n arcs.
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Preliminaries

Generalized Asynchronous Boolean Networks (GABNs)

GABNs can be seen as a generalization of ABNs. At each time step,
a GABN randomly and uniformly selects any number of nodes to
update synchronously.

The whole dynamics of a GABN can be also captured by an STG.
The STG of a GABN of size n has 2n nodes and 2n × 2n arcs, making
its analysis more difficult.
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Preliminaries

Attractors

Attractor [Mizera et al., 2018]

An attractor of a BN is a set of states satisfying any state in this set can
reach any state in this set and cannot reach any other state that is not in
this set.

In general, an attractor of a BN is equivalent to a bottom (terminal)
Strongly Connected Component (SCC) of the STG of this
BN [Garg et al., 2008].

Since the STG of a BN has 2n nodes and at least 2n arcs, naive
approaches for finding attractors (e.g, explicitly building the STG and
then applying graph algorithms) are intractable when n is large.

Based on [Garg et al., 2008], we can classify different types of
attractors.
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Preliminaries

Classification of attractors

Attractor

singleton attractor (fixed point) cyclic attractor

simple attractor complex attractor

type1 attractor type2 attractor

0111

1011 1111 1011 0001 1011 1111

11011001
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Preliminaries

Example

Consider a BN N of three nodes associated to three variables (x1, x2, x3).
Its Boolean functions are given by

f1 = x1 ∨ (¬x1 ∧ ((¬x2 ∧ x3) ∨ (x2 ∧ ¬x3))),

f2 = (¬x1 ∧ ¬x3) ∨ (x2 ∧ x3) ∨ (x1 ∧ ¬x2),

f3 = ¬x1 ∨ (x1 ∧ (¬x2 ∨ (x2 ∧ ¬x3))),

where “∧”, “∨”, and “¬” denote CONJUNCTION, DISJUNCTION, and
NEGATION operators, respectively.
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Preliminaries

STG of the SBN counterpart
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Preliminaries

STG of the SBN counterpart
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An SBN can have:
- fixed points
- type1 attractors
- type2 attractors
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type2 attractor
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Preliminaries

STG of the ABN counterpart
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Preliminaries

STG of the ABN counterpart
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An ABN can have:
- fixed points
- type1 attractors
- complex attractors

fixed point

complex attractor
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Preliminaries

STG of the GABN counterpart
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Preliminaries

STG of the GABN counterpart
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A GABN can have:
- fixed points
- type1 attractors
- complex attractors

fixed point

complex attractor
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Preliminaries

Probabilistic Boolean networks

Probabilistic Boolean Network (PBN)

A Probabilistic Boolean Network (PBN) is defined as a triple (V ,F ,C ),
where V = {x1, ..., xn} (n ≥ 1) is the set of nodes, F = {F1, ...,Fn}, and
C = {C1, ...,Cn}. Each node xi is identified as a Boolean variable, and is
associated with a non-empty set of Boolean functions,

Fi = {f (i)
1 , ..., f

(i)
li
}, li ≥ 1. Each Boolean function f

(i)
j has a probability of

selection associated with it, c
(i)
j . Thus, Ci =

{
c

(i)
1 , ..., c

(i)
li

}
such that∑li

j=1 c
(i)
j = 1. The state of a node or a PBN at time t is defined as same

as that of a BN.
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Preliminaries

Dynamics of PBNs

At each time step, node xi updates its state by

xi (t + 1) = f
(i)

j (x(t)),

where f
(i)

j is selected from Fi with the probability c
(i)
j .

Following the updating scheme, the PBN transits from a state to
another state (possibly identical) with a probability. This transition is
called the probability transition.

Then, the dynamics of a PBN can be represented by all possible
states of the PBN along with all possible probability transitions from
each state.
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Preliminaries

Synchronous PBNs (SPBNs)

Like SBNs, all the nodes of an SPBN update their values
synchronously at each time step.

Then, the whole dynamics of an SPBN can be captured by an STG in
which a transition probability is attached to an arc.

Trinh Van Giang On Attractor Detection and Optimal Control of Boolean NetworksNovember 05, 2021 31 / 103



Preliminaries

Example

Consider an SPBN
SP [Akutsu, 2018]

f (1) =

{
f

(1)
1 = x3, c

(1)
1 = 0.8,

f
(1)

2 = ¬x3, c
(1)
2 = 0.2,

f (2) = f
(2)

1 = x1 ∧ ¬x3, c
(2)
1 = 1.0,

f (3) =

{
f

(3)
1 = x1 ∧ ¬x2, c

(3)
1 = 0.7,

f
(3)

2 = x2, c
(3)
2 = 0.3.

0 0 1

0 0 0 1 1 1

1 1 0

0 1 0

0 1 1 1 0 0

1 0 1

0.8

0.2

0.24 0.56

0.06

0.14

0.56

0.24

0.06

0.14

0.06

0.14

0.56

0.24
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Preliminaries

Interaction graph

The interaction graph of a BN depicts the qualitative interactions between nodes
and is usually represented as a signed directed graph on the set of nodes. An
interaction between two nodes can be positive (+) or negative (-). Consider a BN

f1 = x1 ∧ x2 ∧ x3,

f2 = x1 ∨ ¬x3,

f3 = (x2 ∧ ¬x3) ∨ (x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x2 ∧ x3).

x1 x2

x3

+

+

+

++

−

+

−
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Preliminaries

Interaction graph

The interaction graph of a BN depicts the qualitative interactions between nodes
and is usually represented as a signed directed graph on the set of nodes. An
interaction between two nodes can be positive (+) or negative (-). Consider a BN

f1 = x1 ∧ x2 ∧ x3,

f2 = x1 ∨ ¬x3,

f3 = (x2 ∧ ¬x3) ∨ (x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x2 ∧ x3).

x1 x2

x3

+

+

+

++

−

+

−

A Feedback Vertex Set (FVS) of G is a set of vertices U
such that G − U contains no cycle. This graph has two
FVSs:
- {x1, x3} (the minimum one),
- {x1, x2, x3}.
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Preliminaries

Interaction graph
The interaction graph of a BN depicts the qualitative interactions between nodes
and is usually represented as a signed directed graph on the set of nodes. An
interaction between two nodes can be positive (+) or negative (-). Consider a BN

f1 = x1 ∧ x2 ∧ x3,

f2 = x1 ∨ ¬x3,

f3 = (x2 ∧ ¬x3) ∨ (x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x2 ∧ x3).

x1 x2

x3

+

+

+

++

−

+

−

A Negative Feedback Vertex Set (NFVS) of G is a set of
vertices U such that G − U contains no negative cycle (cycle
with an odd number of negative arcs). This graph has four
NFVSs:
- {x3} (the minimum one),
- {x1, x3},
- {x2, x3},
- {x1, x2, x3}.

Trinh Van Giang On Attractor Detection and Optimal Control of Boolean NetworksNovember 05, 2021 33 / 103



Preliminaries

Interaction graph
The interaction graph of a BN depicts the qualitative interactions between nodes
and is usually represented as a signed directed graph on the set of nodes. An
interaction between two nodes can be positive (+) or negative (-). Consider a BN

f1 = x1 ∧ x2 ∧ x3,

f2 = x1 ∨ ¬x3,

f3 = (x2 ∧ ¬x3) ∨ (x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x2 ∧ x3).

x1 x2

x3

+

+

+

++

−

+

−

A Positive Feedback Vertex Set (PFVS) of G is a set of ver-
tices U such that G − U contains no positive cycle (cycle
with an even number of negative arcs). This graph has four
PFVSs:
- {x1} (the minimum one),
- {x1, x2},
- {x1, x3},
- {x1, x2, x3}.
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Preliminaries

Optimal control of BNs

Standard formulation

Given a BN including a set of internal nodes (X = {x1, ..., xn}) and a set of
external (control) nodes (U = {u1, ..., um}), an initial state x ini ∈ {0, 1}1×n, a
desired state xdes ∈ {0, 1}1×n, a target time M, and a cost vector g ∈ N1×m. Let
decide whether or not there exists a control sequence of 0-1 control vectors
〈u(0), ..., u(M − 1)〉 such that x(0) = x ini , x(M) = xdes , and the linear cost

function C =
∑M−1

j=0 (
∑m

i=1(ui (j)× g(ui ))) is minimum. Then, output one if it
exists.
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Preliminaries

Optimal control of BNs

Standard formulation

Given a BN including a set of internal nodes (X = {x1, ..., xn}) and a set of
external (control) nodes (U = {u1, ..., um}), an initial state x ini ∈ {0, 1}1×n, a
desired state xdes ∈ {0, 1}1×n, a target time M, and a cost vector g ∈ N1×m. Let
decide whether or not there exists a control sequence of 0-1 control vectors
〈u(0), ..., u(M − 1)〉 such that x(0) = x ini , x(M) = xdes , and the linear cost

function C =
∑M−1

j=0 (
∑m

i=1(ui (j)× g(ui ))) is minimum. Then, output one if it
exists.

internal nodes stand for usual nodes (i.e., genes or proteins), external (control)
nodes can stand for external interventions (e.g., drugs, radiation, or chemother-
apy)
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Preliminaries

Optimal control of BNs

Standard formulation

Given a BN including a set of internal nodes (X = {x1, ..., xn}) and a set of
external (control) nodes (U = {u1, ..., um}), an initial state x ini ∈ {0, 1}1×n, a
desired state xdes ∈ {0, 1}1×n, a target time M, and a cost vector g ∈ N1×m. Let
decide whether or not there exists a control sequence of 0-1 control vectors
〈u(0), ..., u(M − 1)〉 such that x(0) = x ini , x(M) = xdes , and the linear cost

function C =
∑M−1

j=0 (
∑m

i=1(ui (j)× g(ui ))) is minimum. Then, output one if it
exists.

the initial state can stand for a disease or cancerous state, and the desired state
can stand for a healthy or normal state
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Preliminaries

Optimal control of BNs

Standard formulation

Given a BN including a set of internal nodes (X = {x1, ..., xn}) and a set of
external (control) nodes (U = {u1, ..., um}), an initial state x ini ∈ {0, 1}1×n, a
desired state xdes ∈ {0, 1}1×n, a target time M, and a cost vector g ∈ N1×m. Let
decide whether or not there exists a control sequence of 0-1 control vectors
〈u(0), ..., u(M − 1)〉 such that x(0) = x ini , x(M) = xdes , and the linear cost

function C =
∑M−1

j=0 (
∑m

i=1(ui (j)× g(ui ))) is minimum. Then, output one if it
exists.

ui (k) = 0 implies that ui is not applied at time k , whereas ui (k) = 1 implies that
ui is applied at time k with the application cost g(ui ).
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Preliminaries

Optimal control of BNs

Standard formulation

Given a BN including a set of internal nodes (X = {x1, ..., xn}) and a set of
external (control) nodes (U = {u1, ..., um}), an initial state x ini ∈ {0, 1}1×n, a
desired state xdes ∈ {0, 1}1×n, a target time M, and a cost vector g ∈ N1×m. Let
decide whether or not there exists a control sequence of 0-1 control vectors
〈u(0), ..., u(M − 1)〉 such that x(0) = x ini , x(M) = xdes , and the linear cost

function C =
∑M−1

j=0 (
∑m

i=1(ui (j)× g(ui ))) is minimum. Then, output one if it
exists.

There are two control modes as follows.

The time-sensitive mode: The condition x(M) = xdes must be strictly
satisfied, i.e., the BN must reach the desired state at exactly the target time
M.

The non-time-sensitive mode: The condition x(M) = xdes can be relaxed,
i.e., the BN can reach the desired state before or at time step M.
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Preliminaries

Optimal control of BNs

Standard formulation

Given a BN including a set of internal nodes (X = {x1, ..., xn}) and a set of
external (control) nodes (U = {u1, ..., um}), an initial state x ini ∈ {0, 1}1×n, a
desired state xdes ∈ {0, 1}1×n, a target time M, and a cost vector g ∈ N1×m. Let
decide whether or not there exists a control sequence of 0-1 control vectors
〈u(0), ..., u(M − 1)〉 such that x(0) = x ini , x(M) = xdes , and the linear cost

function C =
∑M−1

j=0 (
∑m

i=1(ui (j)× g(ui ))) is minimum. Then, output one if it
exists.

Note that there are several variants of the standard formulation designed for
different types of BNs as well as different aims of control, e.g.,

removing the cost vector and the cost function but considering the
maximum (or minimum) probability of reaching the desired state for the
case of SPBNs [Kobayashi and Hiraishi, 2012b];

removing the desired state but considering the average expected cost for the
case of SPBNs [Datta et al., 2003, Kobayashi and Hiraishi, 2012a].
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Contributions

Theoretical contributions

Theoretical results

Relations in dy-
namics between

different types of BNs

The dynamics of an GABN and
that of its SBN counterpart
[Trinh, ASCC, 2019] or ABN

counterpart [Trinh, BIBM, 2020]

DGABNs and other conventional
models [Trinh, TCBB, 2020b]

- deterministic asynchronous models
- block-sequential BNs
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In particular, we demonstrate that these findings pave the
potential ways to analyze different types of BNs as well as
many other popular models.
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DGABNs and other conventional
models [Trinh, TCBB, 2020b]
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- GABNs
- mixed-context BNs

Relations between
network dynam-

ics and structures

The dynamics of a BN and an
FVS [Trinh, TCBB, 2020a]

The dynamics of an ABN and
an NFVS [Trinh, CIBCB, 2021]

Complexity analysis
on optimal control

problems of DA-PBNs

NPPP-hardness and
PSPACE-ness [Trinh,

Automatica, 2021,
in preparation]

- We formulate three meaningful optimal control problems of
DA-PBNs.
- We show that all the three problems are NPPP-hard even
with the restriction that Boolean functions of the DA-PBN
are in 3CNF or that the maximum indegree of the DA-PBN is
bounded by 3.
- We also show that they are all in PSPACE.
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rithms for exactly finding

attractors of a GABN
[Trinh, ASCC, 2019]

An SAT-based algo-
rithm for approximating
attractors of a GABN

[Trinh, IEICE Trans., 2020]

- These algorithms are first analytical and practical methods
for analyzing GABNs.
- Experimental results on various classes of networks show
that the SAT-based algorithm outperforms all the BDD-based
algorithms and can handle large GABNs.
- These results also justify the accuracy of the SAT-based
algorithm.
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A method for exactly
finding attractors
of an ABN [Trinh,
TCBB, 2020a] and
its improved version

[Trinh, CIBCB, 2021]

Experimental results on real biological networks
justify the accuracy of the approximation method
and its efficiency as compared to the two state-
of-the-art methods.
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proximating attrac-

tors of an ABN
[Trinh, BIBM, 2020]

A method for exactly
finding attractors
of an ABN [Trinh,
TCBB, 2020a] and
its improved version

[Trinh, CIBCB, 2021]

This method outperforms the state-of-the-art
methods and can handle very large networks with
up to 1000 nodes in terms of randomly generated
networks and more than 300 nodes in terms of
real biological networks.
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[Trinh, TCBB, 2020b]

Two SMT-based meth-
ods for optimal control
of DGABNs under the

two control modes
[Trinh, TCBB, 2020b]

- There is no existing method specifically designed for DGABNs.
- Although they are extensions of the existing SAT-based methods for SBNs, we
show that they contain substantial differences from the existing ones.
- Experimental results on randomly generated networks and artificial networks
justify their efficiency (can handle large networks).
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- One of these approaches is completely new, whereas two of these approaches
are (non-trivial) extensions of the previous approaches for SPBNs.
- In particular, we propose two reduction rules to significantly accelerate the
third approach.
- These proposed approaches can handle large problem instances in terms of
optimal control of DA-PBNs.
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We have developed software tools for all
the proposed algorithms, methods, and
approaches.
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Key results Relations in dynamics between GABNs and SBNs

Relations in dynamics between GABNs and SBNs
Trinh Van Giang and Kunihiko Hiraishi: “A study on attractors of
generalized asynchronous random Boolean networks,” IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences,
103(8), 987-994, 2020.

Lemma 3.3.1

Let G be a GABN and S be its SBN counterpart. If s is a state of S, then
FRS({s}) ⊆ FRG({s}).

Lemma 3.3.2 [Gershenson, 2002]

Let G be a GABN and S be its SBN counterpart. G and S have the same
set of singleton attractors.

Lemma 3.3.3

Let G be a GABN and and S be its SBN counterpart. G and S have the
same set of type1 attractors.

Theorem 3.3.1

Let G be a GABN and S be its SBN counterpart. Any attractor of G
always contains an attractor of S.
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Relations in dynamics between GABNs and SBNs

Lemma 3.3.1

Let G be a GABN and S be its SBN counterpart. If s is a state of S, then
FRS({s}) ⊆ FRG({s}).

Lemma 3.3.2 [Gershenson, 2002]

Let G be a GABN and S be its SBN counterpart. G and S have the same
set of singleton attractors.

Lemma 3.3.3

Let G be a GABN and and S be its SBN counterpart. G and S have the
same set of type1 attractors.

Theorem 3.3.1

Let G be a GABN and S be its SBN counterpart. Any attractor of G
always contains an attractor of S.

Based on these relations, we
- propose three BDD-based algorithms and an SAT-based algorithm for
attractor detection in GABNs,
- state and prove several relations in dynamics between GABNs and
ABNs.
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Key results Relations between FVSs and BNs

Illustrative example

Example BN 
f1 = x2 ∨ x3,

f2 = x1 ∧ ¬x2,

f3 = x1.

x1x2 x3

+ +

+ +

−

Three FVSs: {x1, x2},
{x2, x3}, {x1, x2, x3}.

(a) Interaction graph

000 001

010

100

011

111 101 110

(b) STG of the ABN counterpart

Trinh Van Giang On Attractor Detection and Optimal Control of Boolean NetworksNovember 05, 2021 40 / 103



Key results Relations between FVSs and BNs

Relations between FVSs and BNs

The following lemmas and theorems do not depend on the updating
scheme of the BN.

Lemma 4.3.1

Let N be a BN whose interaction graph is acyclic. Then the STG of N
has no cycles.

Lemma 4.3.2

Let N be a BN and its STG be G . Let U be an FVS of N . Then G has
no cycles such that all the values of the nodes in U do not change through
these cycles.

Trinh Van Giang, Tatsuya Akutsu and Kunihiko Hiraishi: “An FVS-based
approach to attractor detection in asynchronous random Boolean
networks,” IEEE/ACM TCBB, 2020, in press.
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Relations between FVSs and BNs (cont.)

Theorem 4.3.1

Let N be a BN and its STG be G . Let U = {xi1 , ..., xik} be an FVS of N . Let
B = {bi1 , ..., bik} be a set of Boolean values corresponding to the nodes of U. G ′

is the graph obtained by removing all arcs (x , x ′) from G where∨k
j=1(xij ↔ bij ∧ x ′ij ↔ 1− bij ) holds. This means an arc (x , x ′) will be removed if

it changes at least one node xij ∈ U from bij to 1− bij . In other words, the value
of a node xij ∈ U in a state in G ′ is retained if this value is equal to bij . With this
meaning, we call B as a set of ”retained” values. Then G ′ has no cycles.

000 001

010

100

011

111 101 110

(a) G

000 001

010

100

011

111 101 110

Subsequently, G ′ has
only fixed points.

(b) G ′ with b1 = 0, b2 = 1
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Relations between FVSs and BNs (cont.)

Theorem 4.3.2

Let N be a BN and its STG be G . G ′ is the graph obtained by removing
arcs from G . Let A and A′ be the sets of attractors of G and G ′,
respectively. Then, the exists a mapping m : A→ A′ with m(att) ⊆ att for
all att ∈ A and m(att1) 6= m(att2) for all att1, att2 ∈ A, att1 6= att2.

000 001

010

100

011

111 101 110

A =
{{000}, {111, 101}}

(a) G

000 001

010

100

011

111 101 110

A′ =
{{000}, {010}, {111}}

(b) G ′ with b1 = 0, b2 = 1

By removing arcs from the STG G , any attractor of N does not disappear;
it may only be transformed to a new attractor in G ′.

Trinh Van Giang On Attractor Detection and Optimal Control of Boolean NetworksNovember 05, 2021 43 / 103



Key results FVS-based method

General approach of FVS-ABN

FVS-ABN uses an FVS to systematically remove arcs in the STG of
the ABN to get a candidate set of states that covers all attractors of
the ABN (by Theorems 4.3.1 and 4.3.2).

Then, FVS-ABN uses reachability analysis on the ABN to filter out
this set.

The obtained result is a set of states such that there exists a
one-to-one correspondence between the set of states and the set of
attractors. This set is sufficient because starting from a state in an
attractor, we can enumerate all other states in the attractor by listing
all states reachable from this state [Garg et al., 2008].

We formally prove the correctness of FVS-ABN.
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Key results FVS-based method

Constituent steps of FVS-ABN

This method includes several constituent steps.

We here analyze the problems involving the constituent steps of
FVS-ABN and then give possible solutions for them.

A possible solution may be a new algorithm or an existing technique.

We here show the two most important steps.
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Key results FVS-based method

Preprocessing
Input: An ABN A.
Output: The set A of states.
1: Find an FVS U = {xi1 , ..., xik } of IG(A)
2: Choose a set B = {bi1 , ..., bik } of retained values corresponding to the nodes of U
3: Let G be the STG of A
4: Let G ′ be the STG obtained by removing all arcs (x , x ′) from G where∨k

j=1(xij ↔ bij ∧ x ′
ij
↔ 1− bij ) holds

5: Ffix ← the set of fixed points of G
6: F ← the set of fixed points of G ′

7: F ← F\Ffix

8: Perform Preprocessing-SSF to shrink the set F
9: F ← F\Ffix

10: A← Ffix

11: while F 6= ∅ do
12: Remove a state s from F
13: if UnfReach(A, s,A ∪ F ) = false then
14: A← A ∪ {s}
15: end if
16: end while
17: return A

In each iteration of Preprocessing-SSF, FVS-ABN randomly chooses a node xi

and replaces F by its forward image set by updating only xi (say F ′).
- Preprocessing-SSF may be useful because it is possible that |F ′| < |F | lead-
ing to the final obtained set may be much smaller than the original set.
- Preprocessing-SSF preserves the correctness of FVS-ABN.
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Reachability analysis
Input: An ABN A.
Output: The set A of states.
1: Find an FVS U = {xi1 , ..., xik } of IG(A)
2: Choose a set B = {bi1 , ..., bik } of retained values corresponding to the nodes of U
3: Let G be the STG of A
4: Let G ′ be the STG obtained by removing all arcs (x , x ′) from G where∨k

j=1(xij ↔ bij ∧ x ′
ij
↔ 1− bij ) holds

5: Ffix ← the set of fixed points of G
6: F ← the set of fixed points of G ′

7: F ← F\Ffix

8: Perform Preprocessing-SSF to shrink the set F
9: F ← F\Ffix

10: A← Ffix

11: while F 6= ∅ do
12: Remove a state s from F
13: if UnfReach(A, s,A ∪ F ) = false then
14: A← A ∪ {s}
15: end if
16: end while
17: return A

Checking the reachability in ABNs is the key task in FVS-ABN. We pro-
pose a new algorithm called UnfReach that relies on Petri net unfoldings
and a preprocessing procedure called Preprocessing-BCN as follows.
- UnfReach uses Mole [Schwoon and Romer, 2016] to build on the
fly the finite complete prefix of the encoded 1-safe Petri net of the
ABN [Chatain et al., 2014].
- Based constant nodes of the ABN, Preprocessing-BCN excludes from
A ∪ F (the target set) the states that cannot be reachable from s. If the
excluded set is empty, then we do not need to build the finite prefix. A
constant node is the node that retains its value once it is set to a spe-
cific value (e.g., if f1 = x1 ∨ x2, then x1 is a constant node.)
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Results on real biological networks
FVS-ABN genYsis CABEAN

name n |U| |A| |F | |F1| time time time

ApoptosisNetwork 41 7 8 12 8 7.27 581.07 -

Treatment of Castration Resistant 42 14 16384 0 0 0.13 18.18 0.73

GuardCellAbscisicAcidSignaling 44 8 28 32 15 1.33 7.90 0.83

InflammatoryBowelDisease 47 22 1 960 1 2.47 - -

Stomatal Opening Model 49 13 48 243 14 10.99 31.22 2.38

Differentiation of T lymphocytes 50 18 2050 5581 0 627.76 - 89.75

Senescence 51 12 17 84 2 9.93 18.05 3.00

Drosophila 52 14 128 84 0 4.88 - 1984.40

MAPK 53 10 18 226 6 8.15 - -

B bronchiseptica T retortaeformis 53 15 30 298 0 15.61 3556.85 440.16

TcellLGL 60 23 142 11156 108 55.56 21198.63 916.23

TLGLSurvival 61 25 318 18276 260 174.66 - -

PC12CellDifferentiation 62 3 3 0 0 0.20 5.01 0.59

ButanolProduction 66 18 8192 12416 6144 324.22 - -

HumanMyelomaCells 67 14 83 558 0 47.00 12983.39 -

HGF Signaling in Keratinocytes 68 10 72 256 0 3.79 1200.04 8.75

Colitis associated colon cancer 70 13 10 100 14 391.05 - -

Bcell 72 19 72 934 69 22.59 8702.80 29.84

YeastApoptosis 73 17 8448 4352 4352 75.32 45.85 1.16

IL 6 Signalling 86 21 32768 20480 4096 297.51 - -

T Cell Receptor Signaling 101 10 128 72 24 5.27 3596.65 -

FVS-ABN outperforms genY-
sis [Garg et al., 2008] in most networks.
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Results on real biological networks (cont.)
FVS-ABN genYsis CABEAN

name n |U| |A| |F | |F1| time time time

ApoptosisNetwork 41 7 8 12 8 7.27 581.07 -

Treatment of Castration Resistant 42 14 16384 0 0 0.13 18.18 0.73

GuardCellAbscisicAcidSignaling 44 8 28 32 15 1.33 7.90 0.83

InflammatoryBowelDisease 47 22 1 960 1 2.47 - -

Stomatal Opening Model 49 13 48 243 14 10.99 31.22 2.38

Differentiation of T lymphocytes 50 18 2050 5581 0 627.76 - 89.75

Senescence 51 12 17 84 2 9.93 18.05 3.00

Drosophila 52 14 128 84 0 4.88 - 1984.40

MAPK 53 10 18 226 6 8.15 - -

B bronchiseptica T retortaeformis 53 15 30 298 0 15.61 3556.85 440.16

TcellLGL 60 23 142 11156 108 55.56 21198.63 916.23

TLGLSurvival 61 25 318 18276 260 174.66 - -

PC12CellDifferentiation 62 3 3 0 0 0.20 5.01 0.59

ButanolProduction 66 18 8192 12416 6144 324.22 - -

HumanMyelomaCells 67 14 83 558 0 47.00 12983.39 -

HGF Signaling in Keratinocytes 68 10 72 256 0 3.79 1200.04 8.75

Colitis associated colon cancer 70 13 10 100 14 391.05 - -

Bcell 72 19 72 934 69 22.59 8702.80 29.84

YeastApoptosis 73 17 8448 4352 4352 75.32 45.85 1.16

IL 6 Signalling 86 21 32768 20480 4096 297.51 - -

T Cell Receptor Signaling 101 10 128 72 24 5.27 3596.65 -

FVS-ABN outperforms
CABEAN [Mizera et al., 2018] in most
networks.
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Results on real biological networks (cont.)
FVS-ABN genYsis CABEAN

name n |U| |A| |F | |F1| time time time

ApoptosisNetwork 41 7 8 12 8 7.27 581.07 -

Treatment of Castration Resistant 42 14 16384 0 0 0.13 18.18 0.73

GuardCellAbscisicAcidSignaling 44 8 28 32 15 1.33 7.90 0.83

InflammatoryBowelDisease 47 22 1 960 1 2.47 - -

Stomatal Opening Model 49 13 48 243 14 10.99 31.22 2.38

Differentiation of T lymphocytes 50 18 2050 5581 0 627.76 - 89.75

Senescence 51 12 17 84 2 9.93 18.05 3.00

Drosophila 52 14 128 84 0 4.88 - 1984.40

MAPK 53 10 18 226 6 8.15 - -

B bronchiseptica T retortaeformis 53 15 30 298 0 15.61 3556.85 440.16

TcellLGL 60 23 142 11156 108 55.56 21198.63 916.23

TLGLSurvival 61 25 318 18276 260 174.66 - -

PC12CellDifferentiation 62 3 3 0 0 0.20 5.01 0.59

ButanolProduction 66 18 8192 12416 6144 324.22 - -

HumanMyelomaCells 67 14 83 558 0 47.00 12983.39 -

HGF Signaling in Keratinocytes 68 10 72 256 0 3.79 1200.04 8.75

Colitis associated colon cancer 70 13 10 100 14 391.05 - -

Bcell 72 19 72 934 69 22.59 8702.80 29.84

YeastApoptosis 73 17 8448 4352 4352 75.32 45.85 1.16

IL 6 Signalling 86 21 32768 20480 4096 297.51 - -

T Cell Receptor Signaling 101 10 128 72 24 5.27 3596.65 -

FVS-ABN can handle large
networks in reasonable time.
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Relations between NFVs and ABNs

Trinh Van Giang and Kunihiko Hiraishi: “An improved method for finding
attractors of large-scale asynchronous Boolean networks”, IEEE CIBCB,
2021.

Theorem 4.6.2

Let A be an ABN. Let U− be an NFVS of IG (A) and B− be a set of
retained values corresponding to the nodes of U−. Let att be an attractor
of A. Then there exists a state s such that s ∈ att and s is a fixed point
of the reduced STG with respect to U− and B−.

We also show that Theorem 4.6.2 does not hold for the case of PFVSs.
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Trinh Van Giang and Kunihiko Hiraishi: “An improved method for finding
attractors of large-scale asynchronous Boolean networks”, IEEE CIBCB,
2021.

Theorem 4.6.2

Let A be an ABN. Let U− be an NFVS of IG (A) and B− be a set of
retained values corresponding to the nodes of U−. Let att be an attractor
of A. Then there exists a state s such that s ∈ att and s is a fixed point
of the reduced STG with respect to U− and B−.

We also show that Theorem 4.6.2 does not hold for the case of PFVSs.

Based on this theorem, we improve FVS-ABN by using an NFVS instead
of an FVS to get the candidate set. The use of NFVSs opens a chance to
get a smaller candidate set.
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Results on real biological networks

FVS-ABN iFVS-ABN
name n |A| |U| time (secs) |U−| time (secs)

Differentiation of T lymphocytes 50 2050 18 952.73 6 578.09

HumanMyelomaCells 67 83 13 173.25 6 105.42

HGF Signaling in Keratinocytes 68 72 10 2.34 0 0.54

Influenza A Virus Replication Cycle 131 524 29 - 10 42.33

Signaling in Macrophage Activation 321 4096 16 21216.07 1 6712.42

Wg Pathway of Drosophila 26 16384 15 3.67 1 3.67

TumourCell 32 9 10 0.81 5 0.54

TCellSignaling 40 8 5 0.46 2 0.45

Treatment of Castration Resistant 42 16384 14 0.40 0 0.36

Senescence 51 17 10 22.91 5 18.94

PC12CellDifferentiation 62 3 2 0.45 0 0.46

YeastApoptosis 73 8448 16 76.20 3 76.74

IL 6 Signalling 86 32768 21 2127.45 10 2056.36
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the improved version of FVS-ABN

not obtain the result within 10 hours
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Results on real biological networks

FVS-ABN iFVS-ABN
name n |A| |U| time (secs) |U−| time (secs)

Differentiation of T lymphocytes 50 2050 18 952.73 6 578.09
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IL 6 Signalling 86 32768 21 2127.45 10 2056.36

In 5/13 BNs, iFVS-ABN is much faster than FVS-ABN
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Results on real biological networks

FVS-ABN iFVS-ABN
name n |A| |U| time (secs) |U−| time (secs)
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In the 8/13 remaining BNs, the running time of iFVS-ABN is compara-
ble to that of FVS-ABN.
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Results on real biological networks

FVS-ABN iFVS-ABN
name n |A| |U| time (secs) |U−| time (secs)

Differentiation of T lymphocytes 50 2050 18 952.73 6 578.09

HumanMyelomaCells 67 83 13 173.25 6 105.42

HGF Signaling in Keratinocytes 68 72 10 2.34 0 0.54

Influenza A Virus Replication Cycle 131 524 29 - 10 42.33

Signaling in Macrophage Activation 321 4096 16 21216.07 1 6712.42

Wg Pathway of Drosophila 26 16384 15 3.67 1 3.67

TumourCell 32 9 10 0.81 5 0.54

TCellSignaling 40 8 5 0.46 2 0.45

Treatment of Castration Resistant 42 16384 14 0.40 0 0.36

Senescence 51 17 10 22.91 5 18.94

PC12CellDifferentiation 62 3 2 0.45 0 0.46

YeastApoptosis 73 8448 16 76.20 3 76.74

IL 6 Signalling 86 32768 21 2127.45 10 2056.36

These observations show the efficiency of the use of NFVSs.
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Notable implication

Especially, the principle that we developed for attractor detection in ABNs
can be generalized as a blueprint for attractor detection in various types of

BNs beyond ABNs.

Getting a candidate set

Shrinking the candidate set

Using reachability analysis to filter out the candidate set
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Reasons for studying DGABNs

DGABNs offer an interesting compromise between SBNs and ABNs,
thus could provide a suitable modeling formalism of various types of
systems [Greil et al., 2007]. Many applications of DGABNs in various
fields can be found (see, e.g., [Waidyarathne and Samarasinghe, 2018,
Sherekar and Viswanathan, 2021]).

DGABNs are general and interesting mathematical objects.
I SBNs are a special case of

DGABNs [Gershenson, 2002, Greil et al., 2007].
I Studying DGABNs can be a good starting point for further studies on

more complex models such as deterministic asynchronous
BNs [Gershenson, 2002] and mixed-context
BNs [Gershenson et al., 2003] that are constructed based on DGABNs.

To our best knowledge, all the previous studies on DGABNs are
theoretical or simulation-based. There lack practical methods for
DGABNs.
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Deterministic Generalized Asynchronous Boolean Networks
(DGABNs)

A DGABN is a BN where each node xi is also associated with two
parameters: pi ∈ N+ and qi ∈ N (qi < pi ).

I Let γ denote the least common multiple of all p’s.
I The set of all p′s and q′s is called the context of the DGABN.

At time t, node xi will be updated by xi (t + 1) = fi (x(t)) when the
modulus of time t over pi is equal to qi (i.e., t%pi = qi ). If two or
more nodes can be updated, they will be updated simultaneously.

The evolution of the DGABN is specified by its context, and is
time-dependent. Hence, the dynamics of the DGABN is not directly
captured by an STG like SBNs, ABNs, or GABNs.
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Extended State Transition Graph (ESTG)
Trinh Van Giang and Kunihiko Hiraishi: “On attractor detection and optimal
control of deterministic generalized asynchronous random Boolean networks,”
IEEE/ACM TCBB, 2020, in press.

We define an extended state of a DGABN, which includes a state of this
DGABN and an embedded value that represents the scaled time tscaled of
time t (i.e., t%γ) when reaching this state. Formally,
es ∈ {0, 1}n × {0, ..., γ − 1} is an extended state, where esi (i = 1, ..., n)
denotes the value of internal node xi and esn+1 denotes the value of the
embedded time.

Then, the transition formula between two extended states is given as

T (es j , es j+1) :=
{
es j+1

n+1 = (es j
n+1 + 1)%γ

}
∧

n∧
i=1

{[
es j

n+1%pi = qi ∧ (es j+1
i = fi (es

j )
]
∨
[
es j

n+1%pi 6= qi ∧ (es j+1
i = es j

i )
]}

.

From these definitions, the dynamics of a DGABN can be captured by an
ESTG, a directed graph such that a node represents an extended state and
an arc represents a transition between two extended states, respectively.
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Extended State Transition Graph (ESTG)

We define an extended state of a DGABN, which includes a state of this
DGABN and an embedded value that represents the scaled time tscaled of
time t (i.e., t%γ) when reaching this state. Formally,
es ∈ {0, 1}n × {0, ..., γ − 1} is an extended state, where esi (i = 1, ..., n)
denotes the value of internal node xi and esn+1 denotes the value of the
embedded time.

Then, the transition formula between two extended states is given as

T (es j , es j+1) :=
{
es j+1

n+1 = (es j
n+1 + 1)%γ

}
∧
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i=1

{[
es j

n+1%pi = qi ∧ (es j+1
i = fi (es

j )
]
∨
[
es j

n+1%pi 6= qi ∧ (es j+1
i = es j

i )
]}

.

From these definitions, the dynamics of a DGABN can be captured by an
ESTG, a directed graph such that a node represents an extended state and
an arc represents a transition between two extended states, respectively.

The concept of an ESTG paves several results:
- Relations in dynamics between DGABNs and other conventional models.
- An SMT-based method and two SMT-based methods for attractor detection
and optimal control of DGABNs, respectively.
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Extended State Transition Graph (ESTG)

We define an extended state of a DGABN, which includes a state of this
DGABN and an embedded value that represents the scaled time tscaled of
time t (i.e., t%γ) when reaching this state. Formally,
es ∈ {0, 1}n × {0, ..., γ − 1} is an extended state, where esi (i = 1, ..., n)
denotes the value of internal node xi and esn+1 denotes the value of the
embedded time.
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{
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n+1 + 1)%γ

}
∧
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n+1%pi = qi ∧ (es j+1
i = fi (es

j )
]
∨
[
es j

n+1%pi 6= qi ∧ (es j+1
i = es j

i )
]}

.

From these definitions, the dynamics of a DGABN can be captured by an
ESTG, a directed graph such that a node represents an extended state and
an arc represents a transition between two extended states, respectively.

Furthermore, the dynamics of a DA-PBN (the stochastic extension of DGABNs)
can be captured by an ESTG where a probability is attached to an arc of the
ESTG. With this underlying formulation, we propose three approaches for solv-
ing the optimal control problems of DA-PBNs.
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Future work

Future work

This dissertation opens a number of research directions on BNs that
could be pursued in the future.

First, the theoretical results obtained in this dissertation could be
further explored to contribute more insights into the dynamics of BNs
as well as pave potential ways for developing more efficient methods
for attractor detection and optimal control of BNs.

Second, the methods proposed in this dissertation could be further
improved to handle larger networks (targeting genome-scale networks
that can possess thousands of
components [Mizera et al., 2018, Rozum et al., 2021]).
Ongoing work (since the preliminary defense):

I Trinh Van Giang and Kunihiko Hiraishi: “Computing attractors of
large-scale asynchronous Boolean networks using minimal trap spaces,”
2021, in preparation. Currently, this method can well handle networks
of 3000+ nodes.
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Future work

Future work (cont.)

Third, both the theoretical and practical results of this dissertation
could be extended to those for other less popular but more complex
types of BNs such as random order asynchronous Boolean
networks [Chaves et al., 2006] or generalized to those for more
general models such as multi-valued networks [Luo and Wang, 2013]
and hybrid models [Belta et al., 2001].
Ongoing work:

I Trinh Van Giang, Tatsuya Akutsu and Kunihiko Hiraishi: “On
dynamics of random order asynchronous Boolean networks and an
efficient FVS-based method for approximating their attractors,” 2021,
in preparation.

I Extend iFVS-ABN for finding attractors of ABNs to that for finding
attractors of asynchronous multi-valued
networks [Gan and Albert, 2018]. The extension is not trivial. We have
obtained some preliminary results since the preliminary defense.
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Future work

Future work (cont.)

Last, but not least, research on the dynamics of several special classes
of BNs such as canalyzing and nested canalyzing
BNs [Kauffman et al., 2004, Akutsu et al., 2011], AND-OR
BNs [Melkman et al., 2010, Akutsu et al., 2012], conjunctive
BNs [Weiss et al., 2018], as well as their attractor detection and
optimal control problems, may be of interest. Because of their special
structures, deeper theoretical results and more efficient methods may
be obtained.

Trinh Van Giang On Attractor Detection and Optimal Control of Boolean NetworksNovember 05, 2021 60 / 103



Publications

Journal papers

Trinh Van Giang and Kunihiko Hiraishi: “On optimal control of deterministic
asynchronous probabilistic Boolean networks,” 2021, in preparation.

Trinh Van Giang and Kunihiko Hiraishi: “On attractor detection and
optimal control of deterministic generalized asynchronous random Boolean
networks,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2020, in press.
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2020, in press.
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Fundamentals of Electronics, Communications and Computer Sciences,
103(8), 987-994, 2020.
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Publications

Conference papers

Trinh Van Giang and Kunihiko Hiraishi: “An improved method for finding
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IEEE International Conference on Computational Intelligence in
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Publications

Other papers (not included in this dissertation)

Trinh Van Giang, Tatsuya Akutsu and Kunihiko Hiraishi: “On dynamics of
random order asynchronous Boolean networks and an efficient FVS-based
method for approximating their attractors,” 2021, in preparation.

Trinh Van Giang and Kunihiko Hiraishi: “Computing attractors of
large-scale asynchronous Boolean networks using minimal trap spaces,”
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Publications

We believe that this dissertation will provide very useful tools for
researchers in many fields as well as will be an important starting

point for various potentially future work on Boolean networks research
and beyond.
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Thank you for your attention!
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Appendix Attractor detection in GABNs

Motivation

Asynchronous Boolean networks are considered more suitable than
synchronous ones in modeling biological
systems [Saadatpour et al., 2010].

ABNs and GABNs are conventional asynchronous models that are
usually used in systems biology by the fact that precise information on
time scales of components is usually missing [Schwab et al., 2020].

Whereas many practical methods have been proposed for attractor
detection in ABNs [Garg et al., 2008,
Skodawessely and Klemm, 2011, Mizera et al., 2018], there is no
practical method specifically designed for attractor detection in
GABNs.

In addition, it also lacks theoretical studies linking dynamics of
GABNs and other models [Paulevé and Richard, 2012].

Trinh Van Giang On Attractor Detection and Optimal Control of Boolean NetworksNovember 05, 2021 67 / 103



Appendix Attractor detection in GABNs

Algorithm FR-BR-BDD-1

Input: A GABN G.
Output: The set of attractors of G.
1: Let S be the SBN counterpart of G
2: Compute all attractors of S
3: AS

sing ← the set of singleton attractors of S
4: AS

type1 ← the set of type1 attractors of S
5: AS

type2 ← the set of type2 attractors of S
6: AG ← AS

sing ∪ AS
type1

7: while AS
type2 6= ∅ do

8: Randomly remove a type2 attractor att from AS
type2

9: FS ← FRG(att)
10: BS ← BRG(att)
11: if FS ⊆ BS then
12: AG ← AG + FS {a new attractor}
13: AS

type2 ← AS
type2 − FS

14: end if
15: end while
16: return AG
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Appendix Attractor detection in GABNs

Algorithm FR-BR-BDD-1

Input: A GABN G.
Output: The set of attractors of G.
1: Let S be the SBN counterpart of G
2: Compute all attractors of S
3: AS

sing ← the set of singleton attractors of S
4: AS

type1 ← the set of type1 attractors of S
5: AS

type2 ← the set of type2 attractors of S
6: AG ← AS

sing ∪ AS
type1

7: while AS
type2 6= ∅ do

8: Randomly remove a type2 attractor att from AS
type2

9: FS ← FRG(att)
10: BS ← BRG(att)
11: if FS ⊆ BS then
12: AG ← AG + FS {a new attractor}
13: AS

type2 ← AS
type2 − FS

14: end if
15: end while
16: return AG

The GABN and its SBN counterpart
have the same sets of singleton and
type1 attractors (by Lemmas 3.3.1
and 3.3.2).
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Appendix Attractor detection in GABNs

Algorithm FR-BR-BDD-1

Input: A GABN G.
Output: The set of attractors of G.
1: Let S be the SBN counterpart of G
2: Compute all attractors of S
3: AS

sing ← the set of singleton attractors of S
4: AS

type1 ← the set of type1 attractors of S
5: AS

type2 ← the set of type2 attractors of S
6: AG ← AS

sing ∪ AS
type1

7: while AS
type2 6= ∅ do

8: Randomly remove a type2 attractor att from AS
type2

9: FS ← FRG(att)
10: BS ← BRG(att)
11: if FS ⊆ BS then
12: AG ← AG + FS {a new attractor}
13: AS

type2 ← AS
type2 − FS

14: end if
15: end while
16: return AG

Check whether a type2 attractor of the SBN be-
longs to a complex attractor of the GABN (by
Theorem 3.2.1). If yes, add the new attractor (FS)
to the result set (AG).
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Appendix Attractor detection in GABNs

Algorithm FR-BR-BDD-1

Input: A GABN G.
Output: The set of attractors of G.
1: Let S be the SBN counterpart of G
2: Compute all attractors of S
3: AS

sing ← the set of singleton attractors of S
4: AS

type1 ← the set of type1 attractors of S
5: AS

type2 ← the set of type2 attractors of S
6: AG ← AS

sing ∪ AS
type1

7: while AS
type2 6= ∅ do

8: Randomly remove a type2 attractor att from AS
type2

9: FS ← FRG(att)
10: BS ← BRG(att)
11: if FS ⊆ BS then
12: AG ← AG + FS {a new attractor}
13: AS

type2 ← AS
type2 − FS

14: end if
15: end while
16: return AG Ignore the type2 SBN attractors that belong to the

new GABN attractor.
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Appendix Attractor detection in GABNs

Algorithm FR-BR-BDD-2

Input: A GABN G.
Output: The set of attractors of G.
1: Let S be the SBN counterpart of G
2: Compute all attractors of S
3: AS

sing ← the set of singleton attractors of S
4: AS

type1 ← the set of type1 attractors of S
5: AS

type2 ← the set of type2 attractors of S
6: AG ← AS

sing ∪ AS
type1

7: while AS
type2 6= ∅ do

8: Randomly remove a type2 attractor att from AS
type2

9: FS ← FRG(att)
10: BSres ← BRG

res (att,FS)
11: if BSres = FS then
12: AG ← AG + FS {a new attractor}
13: AS

type2 ← AS
type2 − FS

14: end if
15: end while
16: return AG
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Appendix Attractor detection in GABNs

Algorithm FR-BR-BDD-2

Input: A GABN G.
Output: The set of attractors of G.
1: Let S be the SBN counterpart of G
2: Compute all attractors of S
3: AS

sing ← the set of singleton attractors of S
4: AS

type1 ← the set of type1 attractors of S
5: AS

type2 ← the set of type2 attractors of S
6: AG ← AS

sing ∪ AS
type1

7: while AS
type2 6= ∅ do

8: Randomly remove a type2 attractor att from AS
type2

9: FS ← FRG(att)
10: BSres ← BRG

res (att,FS)
11: if BSres = FS then
12: AG ← AG + FS {a new attractor}
13: AS

type2 ← AS
type2 − FS

14: end if
15: end while
16: return AG This algorithm improves FR-BR-BDD-1 by only

calculating restricted backward reachable sets.
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Appendix Attractor detection in GABNs

Algorithm filtBDD

Input: A GABN G.
Output: The set of attractors of G.
1: Let S be the SBN counterpart of G
2: Compute all attractors of S
3: AS

sing ← the set of singleton attractors of S
4: AS

type1 ← the set of type1 attractors of S
5: AS

type2 ← the set of type2 attractors of S
6: AG ← AS

sing ∪ AS
type1

7: while AS
type2 6= ∅ do

8: Randomly remove a type2 attractor attS from AS
type2

9: if attS does not reach in G(G) any attractor in AS
type2 ∪ AG then

10: AG ← AG + FRG(attS) {a new attractor}
11: end if
12: end while
13: return AG
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Appendix Attractor detection in GABNs

Algorithm filtBDD

Input: A GABN G.
Output: The set of attractors of G.
1: Let S be the SBN counterpart of G
2: Compute all attractors of S
3: AS

sing ← the set of singleton attractors of S
4: AS

type1 ← the set of type1 attractors of S
5: AS

type2 ← the set of type2 attractors of S
6: AG ← AS

sing ∪ AS
type1

7: while AS
type2 6= ∅ do

8: Randomly remove a type2 attractor attS from AS
type2

9: if attS does not reach in G(G) any attractor in AS
type2 ∪ AG then

10: AG ← AG + FRG(attS) {a new attractor}
11: end if
12: end while
13: return AG

This algorithm calculates neither total nor restricted backward
reachable sets (which are usually very large) but filters out the
set of type2 attractors of the SBN counterpart by checking the
reachability in the GABN.
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Appendix Attractor detection in GABNs

Algorithm filtBDD

Input: A GABN G.
Output: The set of attractors of G.
1: Let S be the SBN counterpart of G
2: Compute all attractors of S
3: AS

sing ← the set of singleton attractors of S
4: AS

type1 ← the set of type1 attractors of S
5: AS

type2 ← the set of type2 attractors of S
6: AG ← AS

sing ∪ AS
type1

7: while AS
type2 6= ∅ do

8: Randomly remove a type2 attractor attS from AS
type2

9: if attS does not reach in G(G) any attractor in AS
type2 ∪ AG then

10: AG ← AG + FRG(attS) {a new attractor}
11: end if
12: end while
13: return AG

The reachability is checked by on-the-fly calculating the
forward reachable set.
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Appendix Attractor detection in GABNs

The ApproABN method

Start

An ABN A

Apply filtSAT to
the GABN coun-
terpart G of A

AGsing

AGtype1

FGcomp

Make a long random
walk in the STG of A
for the set FGcomp

FAcomp

AAsing

AAtype1

By Proposition 3.6.1

By Proposition 3.6.2
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The ApproABN method

Start

An ABN A

Apply filtSAT to
the GABN coun-
terpart G of A

AGsing

AGtype1

FGcomp

Make a long random
walk in the STG of A
for the set FGcomp

FAcomp

AAsing

AAtype1

By Proposition 3.6.1

By Proposition 3.6.2

By Theorem 3.6.1.
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Appendix Attractor detection in GABNs

The ApproABN method

Start

An ABN A

Apply filtSAT to
the GABN coun-
terpart G of A

AGsing

AGtype1

FGcomp

Make a long random
walk in the STG of A
for the set FGcomp

FAcomp

AAsing

AAtype1

By Proposition 3.6.1

By Proposition 3.6.2

In the dissertation, we have analyzed in detail some cases in which the
result of ApproABN is incorrect. We have also provided some reasons
convincing the accuracy of ApproABN that will be confirmed by the con-
ducted experiments on real biological networks.
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Appendix Attractor detection in ABNs

Motivation

ABNs are considered more suitable [Saadatpour et al., 2010] for
representing various time scales as well as dealing with the lacking of
knowledge on time scales.

However, whereas many efficient algorithms and tools have been
developed for attractor detection in SBNs, few methods have been
proposed for attractor detection in ABNs due to the high complexity
of the STG of an ABN.

Moreover, the efficiency of these few methods is strictly prevented
when the ABN becomes large, e.g., the number of nodes is over 100.

A more detailed literature review on computational methods for
attractor detection in BNs is provided in Section 4.2 of the
dissertation.

Therefore, it is important and interesting to develop efficient methods
that can handle larger ABNs.
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Appendix Attractor detection in ABNs

First improvement

In general, ABNReach is a reasonable combination of multiple previous
techniques for checking the reachability in ABNs. The result of
ABNReach is correct.

Start

Using PintReach
[Paulevé, 2017] conclusive? Return the result

Using SAT-based
BMC [Biere et al., 1999] SAT? Using UnfReach

yes

no

no

yes
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Appendix Attractor detection in DGABNs

SMT-based method for attractor detection in DGABNs

Dubrova and Teslenko proposed an efficient SAT-based method for
finding attractors of an SBN [Dubrova and Teslenko, 2011].

The ESTG of a DGABN is deterministic like the STG of a SBN,
opening a chance to extend the SAT-based method for SBNs to that
for DGABNs.

We here propose an SMT-based method (called DA-SMT-Att) for
exactly finding attractors of a DGABN. This method is a non-trivial
extension of [Dubrova and Teslenko, 2011].

We also provide a formal proof for the correctness of DA-SMT-Att.
Note that such a proof in the case of SBNs is lacking
in [Dubrova and Teslenko, 2011].
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Appendix Attractor detection in DGABNs

Applications

We applied DA-SMT-Att to two real biological networks and
compare the obtained results to the previous insights into these
networks found in the literature.

We also used DA-SMT-Att to verify several previous insights into
the dynamics of random Boolean networks (i.e., N-K models)
presented in [Gershenson, 2002, Gershenson et al., 2003].
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Appendix Optimal control of DGABNs

Boolean networks with control nodes

BNs with control nodes

A BN with control nodes is defined as a triple (X ,F ,U), where X = {x1, ..., xn}
(n ≥ 1) is the set of internal nodes, F = {f1, ..., fn} is the set of Boolean
functions, and U = {u1, ..., um} (m ≥ 0) is the set of external (control) nodes.
Each node xi is identified as a Boolean variable, and is associated with a Boolean
function fi : Bn × Bm → B. Also, each node ui identified as a Boolean variable.
xi (t) ∈ B and ui (t) ∈ B denote the state of internal node xi and the state of
external node ui at time t, respectively. x(t) = (x1(t), ..., xn(t))> and
u(t) = (u1(t), ..., um(t))> denote the state and the control input of the BN at
time t, respectively.
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Appendix Optimal control of DGABNs

Boolean networks with control nodes

BNs with control nodes

A BN with control nodes is defined as a triple (X ,F ,U), where X = {x1, ..., xn}
(n ≥ 1) is the set of internal nodes, F = {f1, ..., fn} is the set of Boolean
functions, and U = {u1, ..., um} (m ≥ 0) is the set of external (control) nodes.
Each node xi is identified as a Boolean variable, and is associated with a Boolean
function fi : Bn × Bm → B. Also, each node ui identified as a Boolean variable.
xi (t) ∈ B and ui (t) ∈ B denote the state of internal node xi and the state of
external node ui at time t, respectively. x(t) = (x1(t), ..., xn(t))> and
u(t) = (u1(t), ..., um(t))> denote the state and the control input of the BN at
time t, respectively.

Internal node xi updates its state by xi (t + 1) = fi (x(t), u(t)), whereas a control
node can receive an arbitrary Boolean value at each time step.

Trinh Van Giang On Attractor Detection and Optimal Control of Boolean NetworksNovember 05, 2021 76 / 103



Appendix Optimal control of DGABNs

Boolean networks with control nodes

BNs with control nodes

A BN with control nodes is defined as a triple (X ,F ,U), where X = {x1, ..., xn}
(n ≥ 1) is the set of internal nodes, F = {f1, ..., fn} is the set of Boolean
functions, and U = {u1, ..., um} (m ≥ 0) is the set of external (control) nodes.
Each node xi is identified as a Boolean variable, and is associated with a Boolean
function fi : Bn × Bm → B. Also, each node ui identified as a Boolean variable.
xi (t) ∈ B and ui (t) ∈ B denote the state of internal node xi and the state of
external node ui at time t, respectively. x(t) = (x1(t), ..., xn(t))> and
u(t) = (u1(t), ..., um(t))> denote the state and the control input of the BN at
time t, respectively.

DGABNs with control nodes
A DGABN with control nodes is a BN with control nodes such that each internal
node xi is associated with two parameters, pi ∈ N+ and qi ∈ N, qi < pi . Internal
node xi can be updated at time t if t%pi = qi . If multiple internal nodes can be
updated, then all of them are updated simultaneously.
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Appendix Optimal control of DGABNs

The DA-SMT-Con-TS method

Let est be the corresponding extended state of state x(t), where
est

i = xi (t), i ∈ {1, ..., n} and est
n+1 = t%γ.

First, we encode an M-length path from es0 (i.e., starts with x ini at
time t = 0) to esM (i.e., ends with xdes at time t = M) in the ESTG
of the DGABN D as an SMT formula P, which is based on the
transition formula between two extended states of the DGABN.

We then solve P under minimizing the cost function C in Z3
(see [Bjørner et al., 2015] for optimization in Z3).

If SAT(P), then a control sequence and an optimum cost, which can
be easily obtained from the satisfying assignments of the
corresponding SMT variables, are released. Otherwise, ”there are no
control policies” is released.
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Appendix Optimal control of DGABNs

The DA-SMT-Con-NTS method

Based on the method for the time-sensitive mode, we modify the
SMT formula P to represent an M-length path from es0 to esM in
the ESTG of the DGABN such that along with this path, once we
reach an extended state satisfying the following condition, all next
extended states of the path will be equal to this extended state (i.e.,
there are no updates).

The condition means that the values of internal nodes of the
extended state are same as those of the desired state xdes .

Note that we add a new variable r j to indicate either the updating
case (r j = 1) or the non-updating case (r j = 0). This helps us to
easily obtain the real control sequence.

Trinh Van Giang On Attractor Detection and Optimal Control of Boolean NetworksNovember 05, 2021 78 / 103



Appendix Optimal control of DA-PBNs

Reasons for studying optimal control of DA-PBNs

DA-PBNs are general models: a DGABN is a special DA-PBN and an SPBN
is a special DA-PBN [Shmulevich and Dougherty, 2010]. Clearly, optimal
control of DA-PBNs is harder than that of DGABNs or SPBNs. In addition,
developed methods for optimal control of DA-PBNs can be directly applied
for those of DGABNs or SPBNs.

In the context of systems biology, DA-PBNs seem to be more suitable to
model GRNs, since a DA-PBN comprises all the synchronous, asynchronous,
and probabilistic
natures [Faryabi et al., 2008a, Shmulevich and Dougherty, 2010].

It lacks efficient methods for optimal control of DA-PBNs.

I To our best knowledge, [Faryabi et al., 2008a] is the sole method for
optimal control of DA-PBNs. However, this method is inefficient
because it requires to build transition probability matrices of size
(γ2n)× (γ2n), where γ is a given constant.
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Appendix Problem formulation

Optimal control problems of DA-PBNs

Problem OptC-1

Given a DA-PBN DP. Suppose that an initial state of DP is x ini and a
desired state of DP is xdes . Find a control sequence 〈u(0), ..., u(M − 1)〉
that maximizes the reachability probability from x ini to xdes at time M.

Problem OptC-2

Given a DA-PBN DP. Suppose that an initial state of DP is x ini , the
unsafe state of DP is xdes , and ε ∈ [0, 1] is given. Find a control sequence
〈u(0), ..., u(M − 1)〉 that minimizes the reachability probability from x ini to
xdes at time M. If the minimum probability is at most ε, then DP is said
to be safe.

Problems OptC-1 and OptC-2 are generalized from the reachability
problem and the safety problem of
SPBNs [Kobayashi and Hiraishi, 2012b], respectively.
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Appendix Problem formulation

Optimal control problems of DA-PBNs (cont.)

Problem OptC-3

Given a DA-PBN DP. Suppose that the initial state of DP is x ini and the
control time M is given. Find a control sequence 〈u(0), ..., u(M − 1)〉 that
minimizes the expected cost

J = E

[
M−1∑
k=0

{Qx(k) +Rx(k)}+Qf x(M)

∣∣∣∣ x(0) = x ini

]
,

where Q,Qf ∈ R1×n,R ∈ R1×m are weighting vectors.

Problem OptC-3 is generalized from the expected cost problem of
SPBNs [Kobayashi and Hiraishi, 2012a].

Each of these problems is suitable for a specific aim of
control [Kobayashi and Hiraishi, 2012b, Kobayashi and Hiraishi, 2012a].
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Appendix Problem formulation

Important remarks

NP ⊆ Σp
2 ⊆ PH ⊆ NPPP ⊆ PSPACE [Littman et al., 1998]

The Σp
2-hardness of the counterpart of Problem OptC-3 for SPBNs is proved

in [Chen et al., 2013]. By using similar reductions, we can easily obtain the
Σp

2-hardness of the counterparts of Problems OptC-1 and OptC-2 for
SPBNs. Thus, the optimal control problems of DA-PBNs seem harder than
the corresponding optimal control problems of SPBNs. It is reasonable
because an SPBN is a special DA-PBN.

It is not plausible that efficient SAT-based or ILP-based algorithms exist
even in the case of SPBNs because SAT and ILP are NP-complete.

All the three problems are NPPP-hard. Since all the three problems in
PSPACE, their complexity is between NPPP-hard and PSPACE-complete.
Hence, these problems are hard to solve in general. Moreover, in a crude
sense, NPPP is very close to PSPACE. Therefore, to solve these problems,
we may have to encode them as PSPACE-complete problems.
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Appendix Problem formulation

Proposed solution approaches

Problem OptC-2Problem OptC-1 Problem OptC-3

Proposed approach that is based
on Probabilistic Model Checking

(PMC) [Kwiatkowska et al., 2011] and
can be seen as an extension of that for
SPBNs [Kobayashi and Hiraishi, 2012b]

to DA-PBNs.

Proposed approach that is a new approach
that relies on Stochastic Satisfiability

Modulo Theory (SSMT) [Teige, 2012b].

PMC-based
approach

PMC-based
approach

SSMT-based
approach

SSMT-based
approach

Proposed approach that relies on Polynomial
Optimization Problem (POP) [Waki et al., 2008]

and can be seen as an extension of that for
SPBNs [Kobayashi and Hiraishi, 2012a]

to DA-PBNs.

with slight modifications

with slight modifications
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Appendix Problem formulation

Proposed solution approaches

Problem OptC-2Problem OptC-1 Problem OptC-3

Proposed approach that is based
on Probabilistic Model Checking

(PMC) [Kwiatkowska et al., 2011] and
can be seen as an extension of that for
SPBNs [Kobayashi and Hiraishi, 2012b]

to DA-PBNs.

Proposed approach that is a new approach
that relies on Stochastic Satisfiability

Modulo Theory (SSMT) [Teige, 2012b].

PMC-based
approach

PMC-based
approach

SSMT-based
approach

SSMT-based
approach

Proposed approach that relies on Polynomial
Optimization Problem (POP) [Waki et al., 2008]

and can be seen as an extension of that for
SPBNs [Kobayashi and Hiraishi, 2012a]

to DA-PBNs.

with slight modifications

with slight modifications

The general idea of the PMC-based
approach is to encode this problem
as a PMC problem. We here use
PRISM (a probabilistic symbolic model
checker) [Kwiatkowska et al., 2011] to ex-
press and solve the encoded PMC problem.
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Appendix Problem formulation

Proposed solution approaches

Problem OptC-2Problem OptC-1 Problem OptC-3

Proposed approach that is based
on Probabilistic Model Checking

(PMC) [Kwiatkowska et al., 2011] and
can be seen as an extension of that for
SPBNs [Kobayashi and Hiraishi, 2012b]

to DA-PBNs.

Proposed approach that is a new approach
that relies on Stochastic Satisfiability

Modulo Theory (SSMT) [Teige, 2012b].

PMC-based
approach

PMC-based
approach

SSMT-based
approach

SSMT-based
approach

Proposed approach that relies on Polynomial
Optimization Problem (POP) [Waki et al., 2008]

and can be seen as an extension of that for
SPBNs [Kobayashi and Hiraishi, 2012a]

to DA-PBNs.

with slight modifications

with slight modifications

The general idea of the SSMT-based approach is
to encode this problem as an SSMT formula Φ.
By the semantics of SSMT [Teige, 2012b], the
maximum reachability probability is equivalent
to the satisfaction probability of Φ (denoted by
Pr(Φ)). We then use SiSAT [Teige, 2012a], an
SSMT solver, to compute Pr(Φ).
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Appendix Problem formulation

Proposed solution approaches

Problem OptC-2Problem OptC-1 Problem OptC-3

Proposed approach that is based
on Probabilistic Model Checking

(PMC) [Kwiatkowska et al., 2011] and
can be seen as an extension of that for
SPBNs [Kobayashi and Hiraishi, 2012b]

to DA-PBNs.

Proposed approach that is a new approach
that relies on Stochastic Satisfiability

Modulo Theory (SSMT) [Teige, 2012b].

PMC-based
approach

PMC-based
approach

SSMT-based
approach

SSMT-based
approach

Proposed approach that relies on Polynomial
Optimization Problem (POP) [Waki et al., 2008]

and can be seen as an extension of that for
SPBNs [Kobayashi and Hiraishi, 2012a]

to DA-PBNs.

with slight modifications

with slight modifications

The general idea of the POP-based approach
is to encode this problem as a POP. We use
SparsePOP [Waki et al., 2008], a POP solver,
to solve the encoded POP.
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Proposed solution approaches

Problem OptC-2Problem OptC-1 Problem OptC-3

Proposed approach that is based
on Probabilistic Model Checking

(PMC) [Kwiatkowska et al., 2011] and
can be seen as an extension of that for
SPBNs [Kobayashi and Hiraishi, 2012b]

to DA-PBNs.

Proposed approach that is a new approach
that relies on Stochastic Satisfiability

Modulo Theory (SSMT) [Teige, 2012b].

PMC-based
approach

PMC-based
approach

SSMT-based
approach

SSMT-based
approach

Proposed approach that relies on Polynomial
Optimization Problem (POP) [Waki et al., 2008]

and can be seen as an extension of that for
SPBNs [Kobayashi and Hiraishi, 2012a]

to DA-PBNs.

with slight modifications

with slight modifications

We propose two reduction rules to reduce the number of de-
cision variables of the encoded POP, which largely affects the
performance of the POP-based approach.
- The first rule is based on the cost function J.
- The second rule is based on the context of the DA-PBN.
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Important remarks

We can consider other forms of the cost function in Problem OptC-3.
For example, the weighting vectors can be replaced by functions of x
and u [Wei et al., 2017, Akutsu, 2018]. By the expressive power of
PRISM, SiSAT, or SparsePOP, we can easily modify the proposed
approaches to handle a new form of the cost function.

We can consider adding hard constraints (i.e., adding an upper bound
H for the number of controls that can be applied to the network) into
the three problems. The introduction of hard constraints is important
for medical applications because the number of treatments such as
radiation and chemo-therapy is usually limited [Chen et al., 2013].

I Some little modifications to the SSMT-based and POP-based
approaches.

I But it is difficult to modify the PRISM-based approach to handle hard
constraints.
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Computational experiments

In addition to a case study on a realistic network, computational
experiments were performed to evaluate the performance of the three
proposed approaches.

Based on the experimental results, we present experimental analysis along
with theoretical analysis on the effects of some factors (e.g., the number of
nodes, the target time step) on the performance of the proposed approaches.
⇒ A significant contribution because it lacks analysis in both theoretical
and experimental aspects on how the running time of the proposed
approaches depends on some factors in control settings.

We also present a comprehensive comparison among these approaches.
⇒ A significant contribution because in all the previous work, the proposed
approaches for optimal control of SPBNs or DA-PBNs were only compared
to the dynamic programming-based approach; it lacks a comparison among
different proposed approaches.
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Summary of the experimental results

The experimental results confirm the advantages and disadvantages
of each proposed approach as well as suggest that the proposed
approaches can complement each other.

For the PMC-based approach, the running time is linear or polynomial
in M. However, it may meet OOM or takes extremely long time when
the number of reachable states of the PRISM model is too large.
Moreover, the number of reachable states is exponential in n and m.

For the SSMT-based approach, the running time is exponential in M.
However, it can handle the case of large n when the number of
quantified variables is small.

The POP-based approach with reduction gives the best performance
overall, but the running time is still exponential in M.
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Conclusions

In theory, we have introduced a number of new theoretical results
that contribute to the understanding of the dynamics of BNs.

In practice, we have developed several efficient algorithms and
methods for attractor detection and optimal control of different
typical types of BNs.

I The theoretical foundations for these algorithms and methods are the
new theoretical results obtained in this research.

I These algorithms and methods outperform the previous ones and can
handle large-scale networks. Notably, iFVS-ABN can handle large
ABNs with up to 1000 nodes.
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Conclusions

Finally, although systems biology has served as the main motivation
for our research, applications of this dissertation are by no means
limited to biological systems. Since we consider general BNs (i.e.,
there is no restriction in Boolean functions) as well as different types
of BNs (GABNs, ABNs, DGABNs, DA-PBNs), the results (theoretical
results and computational methods) introduced in this dissertation
can be applied to a wide range of other systems.

I Water quality networks [Gao et al., 2017]
I Multivariate systems [Yang et al., 2021]
I Multi-agent systems [Kochemazov and Semenov, 2014]
I Social networks [Green et al., 2007]
I Smart grids [Rivera-Torres and Santiago, 2020]
I ...
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